Prostate cancer is one of the leading causes of death among men in the United States, and acquisition of hormone resistance (androgen independence) by cancer cells is a fatal event during the natural history of prostate cancer. Obesity is another serious health problem and has been shown to be associated with prostate cancer. However, little is known about the molecular basis of this association. Here we show that factor(s) secreted from adipocytes stimulate prostate cancer cell proliferation. Leptin is one of the major adipose cytokines, and it controls body weight homeostasis through food intake and energy expenditure. We identify leptin as a novel growth factor in androgen-independent prostate cancer cell growth. Strikingly, leptin stimulates cell proliferation specifically in androgen-independent DU145 and PC-3 prostate cancer cells but not in androgen-dependent LNCaP-FGC cells, although both cell types express functional leptin receptor isoforms. c-Jun NH 2 -terminal kinase (JNK) has been shown recently to play a crucial role in obesity and insulin resistance. Intriguingly, leptin induces JNK activation in androgen-independent prostate cancer cells, and the pharmacological inhibition of JNK blocked the leptin stimulation of androgenindependent prostate cancer cell proliferation. This suggests that JNK activation is required for leptin-mediated, androgen-independent prostate cancer cell proliferation. Furthermore, other cytokines produced by adipocytes and critical for body weight homeostasis cooperate with leptin in androgen-independent prostate cancer cell proliferation: interleukin-6 and insulin-like growth factor I demonstrate additive and synergistic effects on the leptin stimulation of androgen-independent prostate cancer cell proliferation, respectively. Therefore, adipose cytokines, as well as JNK, are key mediators between obesity and hormone-resistant prostate cancer and could be therapeutic targets.Prostate cancer is one of the leading causes of death among men in the United States. The disease is characterized by a prolonged natural history. Despite its relatively slow growth, a number of patients have persistent and/or recurrent disease. Initial treatment for many patients with recurrent disease is hormonal therapy to remove or decrease serum androgen as a potential growth stimulant for the prostate cancer. Although this approach is initially effective in the majority of patients, ultimately the disease becomes resistant to the loss of hormones, returns, and in many cases, culminates in the death of the patient. Thus, it is desired to develop effective therapies and preventives for hormone-resistant (androgen-independent) prostate cancer.Several lines of evidence indicate that obesity is a risk factor for prostate cancer. In particular, obesity is associated with clinical features characteristic of accelerated progression of prostate cancer: high mortality (1), prostatectomy at a younger age with high grade and more pathologically advanced cancer (2), and tendency for progression of stage B1-D1 ...
Obesity is associated with advanced prostate cancer. Here we demonstrate that in mouse prostate cancer TRAMP-C1 cells epididymal fat extracts from high-fat diet-fed obese mice stimulate androgen-independent cell growth more significantly than those from low-fat diet-fed lean mice or genetically obese leptin-deficient ob/ob mice in correlation with leptin concentrations. This result suggests that obesity promotes androgen-independent prostate cancer cell growth via adipose leptin. We have reported that added leptin stimulates androgen-independent prostate cancer cell proliferation through c-Jun NH(2)-terminal kinase (JNK). As with JNK, signal transducer and activator of transcription 3 (STAT3) and Akt are implicated in androgen-independent prostate cancer. In this study, we identify novel interaction of these three molecules in leptin-stimulated androgen-independent cell proliferation. Leptin activates JNK, STAT3 and Akt in a biphasic manner with a similar time-course. Pharmacological JNK inhibition suppresses leptin-stimulated DNA binding activity, as well as Ser-727 phosphorylation, of STAT3. Since JNK upregulates STAT3 activity via Ser-727 phosphorylation, JNK mediates leptin-stimulated STAT3 activation through Ser-727 phosphorylation. Moreover, JNK inhibition impairs leptin-stimulated Ser-473 phosphorylation of Akt that is required for its activation. Thus, JNK is involved in leptin-stimulated Akt activation. These findings together indicate that JNK mediates leptin-stimulated androgen-independent prostate cancer cell proliferation via STAT3 and Akt.
The purpose of this study was to determine if increased NF-kappaB activity of highly invasive PC-3 cells contributed to their invasive behavior. Increased NF-kappaB activity has been observed in several malignant tumors and it may have an important role in tumorigenesis, progression and chemotherapy resistance. By serial selection, we obtained invasion variant PC-3 cell sublines. The PC-3 High Invasive cells invade readily through a Matrigel reconstituted basement membrane while PC-3 Low Invasive cells have low baseline invasion activity. In these studies, we discovered that NF-kappaB DNA binding activity was increased in PC-3 High Invasive cells when compared to PC-3 Low Invasive cells by electrophoretic mobility shift assay (EMSA). Gel supershift assays showed a 4-fold increase in p65 containing complexes and a 2.2-fold increase in the p50 containing complexes in the PC-3 High Invasive cells. Luciferase reporter assays showed that NF-kappaB dependent transcription activity was increased 10.2 +/- 2.5-fold in the highly invasive cells (P < 0.002). The PC-3 High Invasive cells showed a constitutive increase in phospho-IkappaB alpha and introduction of the super-repressor IkappaB alpha S32/36A inhibited NF-kappaB activity to 19.2 +/- 2.5 percent of control transfected cells (P < or = 0.001). The IkappaBa super-repressor reduced the basement membrane invasion of PC-3 High Invasive cells from 6.2 +/- 1.1 to 3.8 +/- 0.4 percent (P < 0.002) with no decrease in cell viability or proliferation. These results demonstrate that increased NF-kappaB activity contributed directly to the invasive behavior of PC-3 High Invasive prostate cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.