Background-Allopregnanolone (ALLO) and structurally related endogenous neurosteroids are potent modulators of GABA A receptor function at physiologically relevant concentrations. Accumulating evidence implicates a modulatory role for ALLO in behavioral processes underlying ethanol self-administration, discrimination and reinstatement. The purpose of this study was to evaluate the impact of exogenous neurosteroid challenges with the agonist ALLO and the partial agonist/antagonist epipregnanolone (EPI) on the microarchitecture of ethanol drinking patterns.
Exogenous administration of the gamma-aminobutyric acid (GABA)-ergic neurosteroid allopregnanolone (ALLO) can increase ethanol intake in rats and mice. To determine the contribution of endogenous neurosteroids (i.e., ALLO and related pregnane steroids) in the regulation of established ethanol consumption patterns in male C57BL/6J (B6) mice, the 5alpha-reductase (5alpha-R) enzyme inhibitor, finasteride (FIN), was chronically administered and then subsequently withdrawn. Mice were provided daily 2-h limited access to a 10% vol/vol ethanol solution (10E) and water in lickometer chambers during the dark phase. Following the establishment of stable 10E intake patterns, mice were injected intraperitoneally with either vehicle (20% wt/vol 2-hydroxypropyl-beta-cyclodextrin; n=8) or FIN (50 mg/kg; n=16) for 7 days. Effects of withdrawal from FIN treatment were subsequently assessed for an additional 7 days. Ethanol intakes were significantly decreased with acute FIN treatment (days 1-3) and during early withdrawal (days 1-3). Acute FIN treatment was also associated with an extended latency to first bout, reduced first bout size, and greatly attenuated sipper contact count during the initial 20-min interval of 10E access. These findings collectively indicated that acute FIN treatment markedly attenuated the initiation of 10E consumption during the limited access sessions. The influence of FIN on 10E intake patterns was largely dissipated with chronic treatment, suggesting that compensatory changes in neurosteroid modulation of inhibitory tone may have occurred. Thus, acute FIN treatment modulated ethanol intake patterns in a manner opposite to that previously demonstrated for a physiologically relevant, exogenous ALLO dose, consistent with the ability of a alpha-R inhibitor to block ALLO biosynthesis. Manipulation of endogenous neurosteroid activity via biosynthetic enzyme inhibition or antagonism of steroid binding to the GABA type A receptor may prove to be a beneficial pharmacotherapeutic strategy in the intervention of alcohol abuse and alcoholism.
Although systemic allopregnanolone (ALLO; a positive modulator of GABA A receptors) has been shown to enhance ethanol-reinforced responding and to modulate drinking patterns in rodents, the effects of centrally administered ALLO on ethanol intake are not known. The current work examined the effects of intracranial ALLO on operant ethanol self-administration in food-and water-satiated mice, with a procedure designed to estimate ALLO's influence on appetitive versus consummatory processes. Male C57BL/6J (B6) mice were trained to press an ethanol-appropriate lever by being reinforced with 30-min of continuous access to a 10% ethanol solution. Following surgical implantation of a guide cannula aimed at the lateral ventricle and subsequent habituation to vehicle infusions, ALLO (50-400 ng; ICV) was delivered immediately prior to session start. ALLO doses of 100 and 400 ng were further evaluated for their effects on locomotor behavior within activity chambers. ALLO selectively modulated ethanol intake patterns associated with the onset and maintenance of self-administration, while leaving appetitive (i.e., ethanol seeking) measures unaltered. The effects of ALLO on drinking patterns were dissociable from changes in locomotor behavior, as evidenced by the absence of ALLO's influence on response frequency and horizontal distance traveled. These findings support the premise that manipulations in brain ALLO levels may influence the regulatory processes governing ethanol consumption.
The neurosteroid allopregnanolone (ALLO) is a positive modulator of GABA(A) receptors that exhibits a psychopharmacological profile similar to ethanol (i.e., anxiolytic, sedative-hypnotic). Based on research suggesting that manipulation of ALLO levels altered ethanol self-administration in male rodents, the current studies determined whether exogenous ALLO administration or the inhibition of its synthesis in vivo modulated ethanol intake patterns in female C57BL/6J mice. Lickometer circuits collected temporal lick records of ethanol (10%, v/v) and water consumption during daily 2h limited access sessions. Following the establishment of stable ethanol intake, studies examined the effect of an acute ALLO challenge (3.2-24.0 mg/kg) or a 7-day blockade of ALLO production with finasteride (FIN; 50 or 100 mg/kg) on ethanol intake in a within-subjects design. In contrast to results in male mice, ethanol dose (g/kg), ethanol preference and most of the bout parameters were unaltered by ALLO pretreatment in female mice. Ethanol intake in females also was recalcitrant to 7-day treatment with 50 mg/kg FIN, whereas 100 mg/kg FIN significantly reduced the ethanol dose consumed by 35%. The FIN-attenuated ethanol intake was attributable to a significant decrease in bout frequency (up to 45%), with lick patterns indicating reduced maintenance of consumption throughout the 2-h session. FIN also produced a dose-dependent decrease in brain ALLO levels. In conjunction with data in male mice, the present findings indicate that there are sex differences in the physiological regulation of ethanol intake patterns by GABAergic neurosteroids.
Neuronal nicotinic acetylcholine receptors (nAChRs) are believed to be critically involved in ethanol-related behaviors as well as in neurochemical responses to ethanol. However, discernment of nAChR contribution to ethanol reinforcement and consumption remains incomplete. The current studies examined the influence of the nAChR antagonist mecamylamine (MEC) on operant ethanol self-administration using a procedure that independently assessed appetitive and consumptive processes, and compared these findings to effects of MEC on sucrose self-administration. Male C57BL/6J (B6) mice were trained to respond for 30-min access to a retractable drinking tube containing either 10% v/v ethanol (10E) or 5% w/v sucrose (5S). Once trained, mice were habituated to saline injection and then treated with a series of MEC doses (0 - 8 mg/kg; i.p.) in a within-subject design. In a separate cohort, MEC was evaluated for its influence on locomotor activity. MEC dose-dependently reduced 10E and 5S self-administration. The suppression in ethanol intake was attributable to a reduction in bout frequency, whereas the attenuation in sucrose intake was due to a decrease in bout size. Doses of MEC (6 - 8 mg/kg) that altered drinking patterns were also found to impair locomotor activity. Although MEC non-selectively reduced 10E and 5S intakes in mice, there was some specificity in alterations of the underlying drinking pattern for each reinforcer. Assessment of drinking topography within an operant self-administration procedure may provide useful insights regarding the role of nAChR function in the regulation of ethanol consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.