Crystallization in polydisperse ethylene–octene multiblock copolymers, polymerized via chain shuttling chemistry, is examined using two-dimensional synchrotron small- and wide-angle X-ray scattering on flow-aligned specimens. The multiblocks are composed of alternating crystalline (hard) blocks of low 1-octene content and amorphous (soft) blocks of high 1-octene content; the block lengths and the number of blocks per chain are characterized by most-probable distributions. These polymers self-assemble into lamellar domain morphologies in the melt, and the melt morphology is retained in the solid state. Despite extensive mixing between hard and soft blocks, the high crystallinity (>50%) of the hard blocks leads to an alignment of the crystallites within the domain structure, with the orthorhombic polyethylene c-axis generally perpendicular to the lamellar domain normal. The interlamellar domain spacings exhibited by the multiblocks, which exceed 100 nm, are estimated to be 5 times larger than those in near-monodisperse block copolymers having a similar chemical composition and a number-average molecular weight equivalent to the multiblock’s “constituent diblock” repeating unit. This swelling factor exceeds the value of 3 previously reported for analogous polydisperse olefin diblock copolymers, due to the lower segregation strength and enhanced phase mixing of the multiblocks studied here.
We have discovered a synthetic process capable of producing olefin block copolymers (OBCs) with controlled block length polydispersity. Certain compositions of these OBCs self-assemble in the melt to form ordered mesophases. The morphologies and dielectric contrast of the semicrystalline and amorphous blocks produce transparent films exhibiting a partial photonic band gap for frequencies in the visible spectrum. The domain spacings are not only much larger than expected for monodisperse block copolymers of similar molecular weight, but they also exceed the predictions of recent theories for polydisperse block copolymers. An extension to Strong Segregation Theory demonstrates that many molecules have a weak preference for segregation to the interface versus the center of a domain. Minor perturbations can then produce highly swollen but relatively stable domains.
The morphologies of polydisperse ethylene-octene diblock copolymers, synthesized via a novel coordinative chain transfer polymerization process, are examined using two-dimensional synchrotron small-angle and wide-angle X-ray scattering on flow-aligned specimens. The diblock copolymers comprise one amorphous block with high 1-octene content and one semicrystalline block with relatively low 1-octene content, and each block ideally exhibits the most-probable distribution. Near-symmetric diblocks with a sufficiently large octene differential between the amorphous and semicrystalline blocks show well-ordered lamellar domain structures with long periods exceeding 100 nm. Orientation of these domain structures persists through multiple melting/recrystallization cycles, reflecting a robust structure which self-assembles in the melt. The domain spacings are nearly 3-fold larger than those in near-monodisperse polyethylene block copolymers of similar molecular weights. Although the well-ordered lamellar domain structure established in the melt is preserved in the solid state, the crystallites are isotropic in orientation. These materials display crystallization kinetics consistent with a spreading growth habit, indicating that the lamellae do not confine or template the growing crystals. The exceptionally large domain spacings and isotropic crystal growth are attributed to interblock mixing resulting from the large polydispersity; short hard blocks dissolved in the softblock-rich domains swell the domain spacing in the melt and allow hard block crystallization to proceed across the lamellar domain interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.