Background: The syndrome of oculopalatal tremor is a known consequence of lesions in the dentate-olivary pathway. Hypertrophic degeneration of the inferior olive is a recognized pathological correlate of these lesions and hypothesized to cause tremorogenic olivary hypersynchrony. However, oculopalatal tremor also occurs in Alexander disease, which produces severe inferior olive degeneration without intervening hypertrophy. Methods: Serial clinical, imaging, video-oculography and kinematic tremor recording of a patient with oculopalatal and limb tremor. Case study: We report an unusual presentation of oculopalatal tremor and right upper extremity myorhythmia following sequential right dorsolateral and left anteromedial medullary infarcts directly involving both inferior olives. As in adult Alexander disease, our patient did not have hypertrophic olivary degeneration during 10 years of followup. Conclusion: Contemporary theories have emphasized the role of cerebellar maladaptation in "shaping" oscillations generated elsewhere, the inferior olive in particular. Our patient and published Alexander disease cases illustrate that oculopalatal tremor can occur in the absence of hypertrophic olivary degeneration. Therefore, cerebellar maladaptation to any form of olivary damage may be the critical pathophysiology in producing oculopalatal tremor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.