Mammalian aging can be delayed with genetic, dietary and pharmacologic approaches. Given that the elderly population is dramatically increasing and that aging is the greatest risk factor for a majority of chronic diseases driving both morbidity and mortality, it is critical to expand Geroscience research directed at extending human healthspan.
The relative balance between the quantity of white and brown adipose tissue can profoundly affect lipid storage and whole-body energy homeostasis. However, the mechanisms regulating the formation, expansion, and interconversion of these 2 distinct types of fat remain unknown. Recently, the lysosomal degradative pathway of macroautophagy has been identified as a regulator of cellular differentiation, suggesting that autophagy may modulate this process in adipocytes. The function of autophagy in adipose differentiation was therefore examined in the current study by genetic inhibition of the critical macroautophagy gene autophagy-related 7 (Atg7). Knockdown of Atg7 in 3T3-L1 preadipocytes inhibited lipid accumulation and decreased protein levels of adipocyte differentiation factors. Knockdown of Atg5 or pharmacological inhibition of autophagy or lysosome function also had similar effects. An adipocyte-specific mouse knockout of Atg7 generated lean mice with decreased white adipose mass and enhanced insulin sensitivity. White adipose tissue in knockout mice had increased features of brown adipocytes, which, along with an increase in normal brown adipose tissue, led to an elevated rate of fatty acid, β-oxidation, and a lean body mass. Autophagy therefore functions to regulate body lipid accumulation by controlling adipocyte differentiation and determining the balance between white and brown fat. IntroductionObesity is characterized by an expansion of adipose tissue mass resulting from increased adipocyte number and/or size. Lipids in the form of triglycerides (TG) accumulate in various anatomical locations that differ in several regards including whether they are composed primarily of white or brown adipocytes. These 2 distinct types of adipocytes differ in their lipid content and metabolic functions. White adipose tissue (WAT) serves the primary function of lipid storage in the fed state and with fasting releases fatty acids from the breakdown of TG into the circulation for muscle energy production. In contrast, brown adipose tissue (BAT) has more limited TG storage and does not secrete fatty acids but instead uses them for autonomous energy expenditure and heat generation (1). Although the amount of BAT in adult humans has been previously considered to be minimal, recent findings of significant concentrations of brown adipocytes in adult humans (2-5) have raised the possibility that the balance between WAT and BAT mass may be one factor that regulates the development of obesity and its severity (6). Manipulating the process of adipocyte differentiation in order to promote more BAT in place of WAT may therefore be a novel approach to the treatment of obesity and its associated problems (7).Factors determining the differential development of WAT versus BAT remain poorly defined. In mammals, WAT and BAT generally develop before birth, although in rodents, WAT develops postnatally (8). Recent studies suggest that these fat cell populations are not static and may in fact continue to undergo significant cell turnover (9)...
Insulin stimulates the transport of glucose into fat and muscle cells. Although the precise molecular mechanisms involved in this process remain uncertain, insulin initiates its actions by binding to its tyrosine kinase receptor, leading to the phosphorylation of intracellular substrates. One such substrate is the Cbl proto-oncogene product. Cbl is recruited to the insulin receptor by interaction with the adapter protein CAP, through one of three adjacent SH3 domains in the carboxy terminus of CAP. Upon phosphorylation of Cbl, the CAP-Cbl complex dissociates from the insulin receptor and moves to a caveolin-enriched, triton-insoluble membrane fraction. Here, to identify a molecular mechanism underlying this subcellular redistribution, we screened a yeast two-hybrid library using the amino-terminal region of CAP and identified the caveolar protein flotillin. Flotillin forms a ternary complex with CAP and Cbl, directing the localization of the CAP-Cbl complex to a lipid raft subdomain of the plasma membrane. Expression of the N-terminal domain of CAP in 3T3-L1 adipocytes blocks the stimulation of glucose transport by insulin, without affecting signalling events that depend on phosphatidylinositol-3-OH kinase. Thus, localization of the Cbl-CAP complex to lipid rafts generates a pathway that is crucial in the regulation of glucose uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.