The gene for resistance to erythromycin and clindamycin, which is carried on the conjugative Bacteroides plasmid, pBF4, has been shown previously to be part of an element (Tn4351) that transposes in Escherichia coli. We have now introduced Tn4351 into Bacteroides uniformis 0061 on the following two suicide vectors: (i) the broad-host-range IncP plasmid R751 (R751::Tn4351) and (ii) pSS-2, a chimeric plasmid which contains 33 kilobases of pBF4 (including Tn4351) cloned into the IncQ plasmid RSF1010 and which is mobilized by R751. When E. coli HB101, carrying either R751::Tn4351 or R751 and pSS-2, was mated with B. uniformis under aerobic conditions, Emr transconjugants were detected at a frequency of 10-6 to 10-5 (R751::Tn4351) or 10-8 to 10-6 (R751 and pSS-2). In matings involving pSS-2, all Emr transconjugants contained simple insertions of Tn43S1 in the chromosome, whereas in matings involving R751::Tn4351, about half of the Emr transconjugants had R751 cointegrated with Tn4351 in the chromosome. Of the Emr transconjugants, 13% were auxotrophs.Bacteroides spp. which had R751 cointegrated with Tn4351 in the chromosome did not transfer R751 or Tn4351 to E. coli HB101 or to isogenic B. uniformis, nor did the integrated R751 mobilize pE5-2, an E. coli-Bacteroides shuttle vector that contains a transfer origin that is recognized by R751.
Bacteroides conjugative transposons (CTns) are thought to transfer by first excising themselves from the chromosome to form a nonreplicating circle, which is then transferred by conjugation to a recipient. Earlier studies showed that transfer of most Bacteroides CTns is stimulated by tetracycline, but it was not known which step in transfer is regulated. We have cloned and sequenced both ends of the Bacteroides CTn, CTnDOT, and have used this information to examine excision and integration events. A segment of DNA that contains the joined ends of CTnDOT and an adjacent open reading frame (ORF), intDOT, was necessary and sufficient for integration into the Bacteroides chromosome. Integration of this miniature form of the CTn was not regulated by tetracycline. Excision of CTnDOT and formation of the circular intermediate were detected by PCR, using primers designed from the end sequences. Sequence analysis of the PCR products revealed that excision and integration involve a 5-bp coupling sequence-type mechanism possibly similar to that used by CTn Tn916, a CTn found originally in enterococci. PCR analysis also demonstrated that excision is a tetracycline-regulated step in transfer. The integrated minielement containing intDOT and the ends of CTnDOT did not excise, nor did a larger minielement that also contained an ORF located immediately downstream of intDOT designated orf2. Thus, excision involves other genes besides intDOT and orf2. Both intDOT and orf2 were disrupted by single-crossover insertions. Analysis of the disruption mutants showed that intDOT was essential for excision but orf2 was not. Despite its proximity to the integrase gene, orf2 appears not to be essential for excision.
Integrated self‐transmissible elements called conjugative transposons have been found in many different bacteria, but little is known about how they excise from the chromosome to form the circular intermediate, which is then transferred by conjugation. We have now identified a gene, exc, which is required for the excision of the Bacteroides conjugative transposon, CTnDOT. The int gene of CTnDOT is a member of the lambda integrase family of recombinases, a family that also contains the integrase of the Gram‐positive conjugative transposon Tn916. The exc gene was located 15 kbp from the int gene, which is located at one end of the 65 kbp element. The exc gene, together with the regulatory genes, rteA, rteB and rteC, were necessary to excise a miniature form of CTnDOT that contained only the ends of the element and the int gene. Another open reading frame (ORF) in the same operon and upstream of exc, orf3, was not essential for excision and had no significant amino acid sequence similarity to any proteins in the databases. The deduced amino acid sequence of the CTnDOT Exc protein has significant similarity to topoisomerases. A small ORF (orf2) that could encode a small, basic protein comparable with lambda and Tn916 excision proteins (Xis) was located immediately downstream of the CTnDOT int gene. Although Xis proteins are required for excision of lambda and Tn916, orf2 had no effect on excision of the element. Excision of the CTnDOT mini‐element was not affected by the site in which it was integrated, another difference from Tn916. Our results demonstrate that the Bacteroides CTnDOT excision system is tightly regulated and appears to be different from that of any other known integrated transmissible element, including those of some Bacteroides mobilizable transposons that are mobilized by CTnDOT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.