Epicuticular wax on needles was evaluated for its influence on Cronartium ribicola infection of resistant and susceptible selections of Pinus strobus. Environmental scanning electron microscopy comparisons revealed that needles from a resistant selection of eastern white pine, P327, had a significantly higher percentage of stomata that were occluded with wax, fewer basidiospores germinating at 48 h after inoculation, and fewer germ tubes penetrating stomata than needles from a susceptible selection H111. In addition, needles from seedlings that failed to develop symptoms 6 weeks after inoculation, from a cross between P327 and susceptible parent H109, had a significantly higher percentage of stomata occluded with wax compared with needles from seedlings that developed symptoms. In experiments where epicuticular waxes were removed from needles before seedlings were infected, resistant seedlings without wax developed approximately the same number of infection spots (as measured by spot index) as susceptible seedlings with wax intact. Gas chromatography/mass spectrometry comparisons of extracted epicuticular waxes revealed several peaks that were specific to P327 and not found in susceptible H111 suggesting biochemical differences in wax composition. These results implicate the role of epicuticular waxes as a resistance mechanism in P. strobus selection P327 and suggest a role for waxes in reducing spore germination and subsequent infection through stomatal openings.
In order to characterize a hypersensitive-like reaction in selected Pinus strobus seedlings to Cronartium ribicola, a proteomic comparison of needles from resistant and susceptible seedlings was undertaken using two-dimensional gel electrophoresis (2-DE). The results revealed 19 polypeptides specific to resistant seedlings and seven of these specific to infected resistant seedlings. There were 13 polypeptides up-regulated (> or = 3-fold increase) in resistant family P327 in comparison to needle tissue from susceptible and mock-inoculated seedlings. Electrospray ionization liquid chromatography and tandem mass spectrometry was used to sequence 11 proteins from the 2-DE gels. Sequences obtained from electrospray ionization liquid chromatography and tandem mass spectrometry were used for MS-BLAST and Pro-ID database searches allowing identification with a 95 to 99% confidence level. Six proteins were determined to be homologs of proteins with known roles in disease resistance, five were determined to be homologs of members of the leucine-rich repeat (LRR) superfamily, and one was a homolog of heat shock protein 90, a protein that serves as a cofactor for certain LRR proteins. This is the first report of members of the LRR family with functional homologs in Pinus strobus and of a molecular basis for white pine blister rust resistance in Pinus strobus.
Buddleia davidii Franch. ‘Royal Red’ was grown in pine bark amended with 0.0, 2.4, 4.7 or 9.5 kg/m3 (0.0, 4.0, 8.0, or 16.0 lbs/yd3) dolomitic lime. Growth characteristics responded quadratically to dolomitic lime with those plants receiving 2.4 kg/m3 having the greatest shoot and root dry weights and inflorescence numbers. Plants grown in 4.7 kg/m3 had the greatest shoot lengths. Concentrations of Ca and Mg in leaves of plants grown in containers without dolomitic lime amendment were below that recommended for normal growth of B. davidii. Leaf concentrations of N, S and Mn showed quadratic responses to dolomitic lime additions. Media pH and concentrations of NO3, Al, B, Mn and P also showed quadratic responses. Media Zn concentrations showed a linear response. Although all dolomitic lime amendments tested improved growth of Buddleia davidii ‘Royal Red’, the incorporation of 2.4 kg/m3 produced maximum growth and inflorescence quantity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.