Many enzymes mold their structures to enclose substrates in their active sites such that conformational remodeling may be required during each catalytic cycle. In adenylate kinase (AK), this involves a large-amplitude rearrangement of the enzyme's lid domain. Using our method of high-resolution single-molecule FRET, we directly followed AK's domain movements on its catalytic time scale. To quantitatively measure the enzyme's entire conformational distribution, we have applied maximum entropy-based methods to remove photon-counting noise from single-molecule data. This analysis shows unambiguously that AK is capable of dynamically sampling two distinct states, which correlate well with those observed by x-ray crystallography. Unexpectedly, the equilibrium favors the closed, active-site-forming configurations even in the absence of substrates. Our experiments further showed that interaction with substrates, rather than locking the enzyme into a compact state, restricts the spatial extent of conformational fluctuations and shifts the enzyme's conformational equilibrium toward the closed form by increasing the closing rate of the lid. Integrating these microscopic dynamics into macroscopic kinetics allows us to model lid opening-coupled product release as the enzyme's rate-limiting step.conformational equilibrium ͉ rate-limiting step ͉ single-molecule FRET ͉ adenylate kinase P roteins such as enzymes are flexible with a range of motions spanning from picoseconds for localized vibrations to seconds for concerted global conformational rearrangements (1). Despite their randomly fluctuating environment, in which stochastic collisions with solvent molecules drive changes in tertiary structure, enzymes have evolved to catalyze reactions efficiently and specifically. Indeed, conformational transitions have been postulated to play a central role in enzyme functions in a wide variety of ways, including direct contribution to catalysis (2), allosteric regulation (3), and large-scale conformational changes in response to ligand binding (4). Most of our current understanding of structural motions in solution comes from NMR experiments (5) as well as from molecular dynamics simulations (6), approaches that are best suited to study dynamics in the picoto millisecond time scales. Because catalysis in enzymes frequently occurs in the submillisecond to minute time regime, our current understanding of the relationship between enzyme function and conformational dynamics comes from NMR experiments involving relatively localized motions of active site forming loops on the submillisecond time scale (7-10). However, many enzymes contain active sites located in between domains in which large-amplitude, low-frequency domain motions are required to complete their Michaelis-Menten enzyme-substrate complexes. Even simple questions regarding these transitions remain generally unanswered: What is the number and range of conformational states accessible to enzymes during their catalytic cycle? How does the enzyme's conformation respond to interac...
We have previously shown that apolipoprotein E (Apoe) promotes the formation of amyloid in brain and that astrocyte-specific expression of APOE markedly affects the deposition of amyloid-beta peptides (Abeta) in a mouse model of Alzheimer disease. Given the capacity of astrocytes to degrade Abeta, we investigated the potential role of Apoe in this astrocyte-mediated degradation. In contrast to cultured adult wild-type mouse astrocytes, adult Apoe(-/-) astrocytes do not degrade Abeta present in Abeta plaque-bearing brain sections in vitro. Coincubation with antibodies to either Apoe or Abeta, or with RAP, an antagonist of the low-density lipoprotein receptor family, effectively blocks Abeta degradation by astrocytes. Phase-contrast and confocal microscopy show that Apoe(-/-) astrocytes do not respond to or internalize Abeta deposits to the same extent as do wild-type astrocytes. Thus, Apoe seems to be important in the degradation and clearance of deposited Abeta species by astrocytes, a process that may be impaired in Alzheimer disease.
The observation of promoter methylation in the non-neoplastic cells of the prostate tumor microenvironment may advance our understanding of prostate cancer development and progression and lead to new diagnostic and prognostic markers and therapeutic targets.
SUMMARY The NtrC-like AAA+ ATPases control virulence and other important bacterial activities through delivering mechanical work to σ54-RNA polymerase to activate transcription from σ54-dependent genes. We report the first crystal structure for such an ATPase, NtrC1 of Aquifex aeolicus, in which the catalytic arginine engages the gamma-phosphate of ATP. Comparing the new structure with those previously known for apo and ADP-bound states supports a novel rigid-body displacement model that is consistent with large-scale conformational changes observed by low-resolution methods. First, the arginine-finger induces rigid-body roll, extending surface loops above the plane of the ATPase ring to bind σ54. Second, ATP hydrolysis permits Pi release and retraction of the arginine with a reversed roll, remodeling σ54-RNAP. This model provides a fresh perspective on how ATPase subunits interact within the ring-ensemble to promote transcription, directing attention to structural changes on the arginine-finger side of an ATP-bound interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.