There are no conventional lymphatic vessels within the CNS parenchyma, although it has been hypothesized that lymphatics near the cribriform plate or dura maintain fluid homeostasis and immune surveillance during steady-state conditions. However, the role of these lymphatic vessels during neuroinflammation is not well understood. We report that lymphatic vessels near the cribriform plate undergo lymphangiogenesis in a VEGFC – VEGFR3 dependent manner during experimental autoimmune encephalomyelitis (EAE) and drain both CSF and cells that were once in the CNS parenchyma. Lymphangiogenesis also contributes to the drainage of CNS derived antigens that leads to antigen specific T cell proliferation in the draining lymph nodes during EAE. In contrast, meningeal lymphatics do not undergo lymphangiogenesis during EAE, suggesting heterogeneity in CNS lymphatics. We conclude that increased lymphangiogenesis near the cribriform plate can contribute to the management of neuroinflammation-induced fluid accumulation and immune surveillance.
Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.
An estimated one-third of the world's population is infected with Mycobacterium tuberculosis, although most affected individuals maintain a latent infection. This control is attributed to the formation of granulomas, cell masses largely comprising infected macrophages with T cells aggregated around them. Inflammatory DCs, characterized as CD11c + CD11b + Ly6C + , are also found in granulomas and are an essential component of the acute immune response to mycobacteria. However, their function during chronic infection is less well understood. Here, we report that CD11c + cells dynamically traffic in and out of both acute and chronic granulomas induced by Mycobacterium bovis strain bacillus Calmette-Guérin (BCG) in mice. By transplanting Mycobacterium-induced granulomas containing fluorescently labeled CD11c + cells and bacteria into unlabeled mice, we were able to follow CD11c + cell trafficking and T cell activation. We found that half of the CD11c + cells in chronic granulomas were exchanged within 1 week. Compared with tissue-resident DC populations, CD11c + cells migrating out of granuloma-containing tissue had an unexpected systemic dissemination pattern. Despite low antigen availability, systemic CD4 + T cell priming still occurred during chronic infection. These data demonstrate that surveillance of granulomatous tissue by CD11c + cells is continuous and that these cells are distinct from tissue-resident DC populations and support T cell priming during both stages of Mycobacterium infection. This intense DC surveillance may also be a feature of Mycobacterium tuberculosis infection and other granuloma-associated diseases.
Highlights d Mycobacterial granulomas contain a subpopulation of VEGF-A-producing macrophages d VEGF-A recruits macrophages to the granuloma via a nonangiogenic pathway d VEGF-A inhibition reduces granulomatous inflammation with limited effect on protection d Mice with myeloid-specific deletion of VEGF-A are more resistant to Mtb infection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.