Purified populations of both human peripheral blood monocytes and murine peritoneal macrophages synthesize and release Prostaglandin E in vitro. In contrast, prostaglandin E was detected in neither the supernate fluids from cultures of highly enriched human lymphocytes and granulocytes, nor in nonadherent murine peritoneal cells. Macrophage prostaglandin E production was markedly enhanced by endotoxin, and completely suppressed by indomethacin. All neoplastic monocyte-macrophage cell lines examined elaborated prostaglandin E in vitro, either constitutively or after induction with endotoxin. In contrast, prostaglandin E production could not be detected from either a T- or B-cell lymphoma, whether or not they were treated with endotoxin. These findings thus indicate that the blood monocyte and tissue macrophage represent an important source of prostaglandin E, a function shared by both normal and neoplastic mononuclear phagocytes.
The clonal proliferation of the committed granulocyte-macrophage stem cell is controlled by a balance between mutually opposing factors, colony stimulating factor and prostaglandin E, both of monocyte-macrophage derivation. Increases beyond a critical concentration of colony stimulating factor within the local milieu of the mononuclear phagocyte induces the coincident elaboration of prostaglandin E, a self-regulated response which serves to limit the unopposed humoral stimulation of myelopoiesis.
Hemopoietic colony-forming cells committed to macrophage differentiation (M-CFC) are selectively and differentially inhibited by prostaglandin E (PGE). A hierarchy of sensitivity was observed among murine CFC stimulated by colony-stimulating factors (CSF) which differ in their ability to initiate proliferation of morphologically distinct colony types, or stimulated by CSF provided by macrophage feeder layers. Inhibition of macrophage colony formation to 50 percent levels occurred with PGE concentrations between 10(-8) and 10(-9) M, and was still evident at 10(-10) -10(-11) M PGE concentrations. The growth of mixed colonies containing both macrophages and neutrophils was less sensitive to the inhibitory effects of PGE, however, the monocytoid component of these colonies was reduced in the presence of PGE. Neutrophil progenitor cell proliferation was not influenced by PGE concentrations below 10(-6) M, regardless of time of addition of PGE, whereas clonal macrophage expansion, as well as clone size, was sensitive to inhibition by PGE when added as late as 3 d after culture initiation. Prostaglandin F(2α), was not inhibitory to colony formation. Experimental evidence for a selective role of macrophage PGE in the regulation of macrophage colony formation was directly provided by utilizing resident peritoneal macrophages as a source of CSF for bone marrow target cell overlays. Simultaneous morphological analysis of colonies proliferating in bilayer culture in response to increasing concentrations of macrophages, and direct measurements of PGE synthesized by an identical number of macrophages maintained in liquid culture demonstrate that a specific decline in macrophage colony formation occurs coincident with a linear increase in macrophage PGE synthesis. Inhibition of macrophage PGE synthesis by indomethacin results in the specific enhancement of macrophage colony formation. Furthermore, macrophage PGE synthesis is induced by CSF preparations with the selective capacity to differentially stimulate macrophage proliferation, but not by those which preferentially stimulate granulocyte colony formation. In comparison to the effects of PGE on M-CFC, polymorphonuclear granulocyte-derived lactoferrin (LF) reduces macrophage production of colony-stimulating activities for macrophage, mixed macrophage- neutrophil and neutrophil colony formation. The ability of LF to reduce macrophage PGE synthesis, presumably by decreasing CSF production, suggests that LF and PGE can interact in the control of macrophage and granulocyte proliferation.
A functional subpopulation of murine B lymphocytes proliferate in semisolid agar culture in the presence of 2-mercaptoethanol to form colonies. The effects of diffusible macrophage-derived factors on this focal proliferation was investigated using a two-layer culture system which prevented macrophage-lymphocyte contact and permitted B-cell activation to be critically assessed under conditions of extremely low cell densities. Adherent peritoneal macrophages incorporated within underlayers of spleen or lymph node cell cultures potentiated both the number and size of developing B-cell colonies. These effects were most striking when low numbers of spleen or lymph node cells, or macrophage- depleted lymphoid cell suspensions were used. Thus, macrophage-depleted lymph node ceils gave rise to virtually no colonies, but colony-forming ability was restored by the presence of an optimal number of macrophages. When the number of macrophages exceeded that required for optimal stimulation, colony formation was suppressed; an effect which was largely prevented by indomethacin, an inhibitor of prostaglandin synthesis. Under these conditions, stimulation and inhibition of B-cell activation by macrophages could be dissociated, indicating that each signal is selectively controlled by individual molecules elaborated by the macrophage. With an appropriate number of macrophages required for B-cell activation, and sufficient indomethacin to inhibit the accumulation of macrophage-derived prostaglandin, B-lymphocyte clonal proliferation was a linear function of the number of B cells placed in culture. In the absence of macrophages, B-cell colony formation was potentiated by both lipopolysaccharide and intact sheep erythrocytes through a mechanism different from that of the macrophage-derived stimulatory factor. In addition to their direct stimulatory effect on B-cell proliferation, lipopolysaccharide and sheep erythrocytes were each capable of modulating the production and/or release of B-cell stimulatory and inhibitory factors by the macrophage. Parallel studies of conventional mitogen- stimulated lymphocyte cultures did not show a requirement for macrophages and confirm that the semisolid assay is uniquely suited to studies on the regulatory role of the macrophage in B-cell activation.
The biosynthesis of prostaglandin E (PGE) by normal and neoplastic macrophages is intrinsically linked to their synthesis of, and exposure to, myeloid colony-stimulating factors (CS-factors). The defect in responsiveness to endotoxin lipopolysaccharide (LPS) by macrophages from C3H/Hej mice extends equally to the synthesis of CS-factor and PGE. However, C3H/Hej macrophages can be stimulated to synthesize PGE by treatment with agents other than LPS [zymosan, tuberculin purified protein derivative, concanavalin A, poly(I)poly(C)J, which also stimulate CS-factor production, or by the addition of various preparations of soluble CS-factor. In peritoneal wash preparations, constitutive PGE synthesis occurred in rapidly sedimenting macrophage cells, whereas constitutive CS-factor production and inducible PGE synthesis occurred in slower sedimenting adherent cells. A similar functional heterogeneity in CS-factor and PGE production was found in neoplastic macrophage cell lines. The association of elevated CS-factor levels atnd PGE synthesis by macrophages suggests a role for CS-factor in many of the physiological responses heretofore associated w' ith elevated tissue levels of the E type prostaglandins.The growth and maturation of myeloid progenitor cells in vitro depends upon a class of regulatory proteins termed colonystimulating factor(s) [CS-factor(s)] (1, 2). The elaboration of CS-factors by mononuclear phagocytes (3-5), particularly after their exposure in vitro to agents-such as bacterial endotoxin (6, 7)-that elevate serum CS-factor levels and stimulate granulocyte and monocyte-macrophage formation in vivo (8, 9) has implicated the blood monocyte and tissue macrophage as the primary CS-factor-producing cell population. Clonal proliferation of both granulocyte-macrophage progenitor cells (1) and macrophage precursor cells (10) in'semisolid medium is the usual bioassay for the regulatory action of CS-factors.We recently showed that increasing concentrations of a source of CS-factor progressively stimulated prostaglandin E AGE) synthesis by human and murine macrophages (11). The endotoxin promotion of CS-factor production was also correlated with increased PGE synthesis by macrophages (12
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.