Despite the numerous studies proposing early human population expansions from Africa into Arabia during the Late Pleistocene, no archaeological sites have yet been discovered in Arabia that resemble a specific African industry, which would indicate demographic exchange across the Red Sea. Here we report the discovery of a buried site and more than 100 new surface scatters in the Dhofar region of Oman belonging to a regionally-specific African lithic industry - the late Nubian Complex - known previously only from the northeast and Horn of Africa during Marine Isotope Stage 5, ∼128,000 to 74,000 years ago. Two optically stimulated luminescence age estimates from the open-air site of Aybut Al Auwal in Oman place the Arabian Nubian Complex at ∼106,000 years ago, providing archaeological evidence for the presence of a distinct northeast African Middle Stone Age technocomplex in southern Arabia sometime in the first half of Marine Isotope Stage 5.
The emerging picture of prehistoric Arabia suggests that early modern humans were able to survive periodic hyperarid oscillations by contracting into environmental refugia around the coastal margins of the peninsula. This paper reviews new paleoenvironmental, archaeological, and genetic evidence from the Arabian Peninsula and southern Iran to explore the possibility of a demographic refugium dubbed the "Gulf Oasis," which is posited to have been a vitally significant zone for populations residing in southwest Asia during the Late Pleistocene and Early Holocene. These data are used to assess the role of this large oasis, which, before being submerged beneath the waters of the Indian Ocean, was well watered by the Tigris, Euphrates, Karun, and Wadi Batin rivers as well as subterranean aquifers flowing beneath the Arabian subcontinent. Inverse to the amount of annual precipitation falling across the interior, reduced sea levels periodically exposed large portions of the Arabo-Persian Gulf, equal at times to the size of Great Britain. Therefore, when the hinterlands were desiccated, populations could have contracted into the Gulf Oasis to exploit its freshwater springs and rivers. This dynamic relationship between environmental amelioration/desiccation and marine transgression/ regression is thought to have driven demographic exchange into and out of this zone over the course of the Late Pleistocene and Early Holocene, as well as having played an important role in shaping the cultural evolution of local human populations during that interval. For Dilmun, the land of my lady's heart, I will create long waterways, rivers and canals, whereby water will flow to quench the thirst of all beings and bring abundance to all that lives. (The promise of Enki the Lord of Sweet Waters to Ninhursag the Earth Mother, from the Sumerian creation myth "Enki and Ninhursag"; Kramer 1945) Introduction: Out of Africa and Into Arabia? The investigation presented in this paper commences with the question of human expansion from Africa into Arabia during the Late Pleistocene (128,000-12,000 BP). Scholars often envision South Arabia as a population corridor, drawing on evidence from archaeozoology (
Climatic changes in Arabia are of critical importance to our understanding of both monsoon variability and the dispersal of anatomically modern humans (AMH) out of Africa. The timing of dispersal is associated with the occurrence of pluvial periods during Marine Isotope Stage (MIS) 5 (ca. 130-74ka), after which, arid conditions between ca. 74 and 10.5 ka are thought to have restricted further migration and range expansion within the Arabian interior. Whilst a number of records indicate that this phase of aridity was punctuated by an increase in monsoon strength during MIS 3, uncertainties regarding the precision of terrestrial records and suitability of marine archives as records of precipitation, mean that the occurrence of this pluvial remains debated. Here we present evidence from a series of relict lake deposits within southeastern Arabia, which formed at the onset of MIS 3 (ca. 61-58 ka). At this time, the incursion of monsoon rainfall into the Arabian interior activated a network of channels associated with an alluvial fan system along the western flanks of the Hajar Mountains, leading to lake formation. Multiproxy evidence indicates that precipitation increases intermittently recharged fluvial systems within the region, leading to lake expansion in distal fan zones. Conversely, decreased precipitation led to reduced channel flow, lake contraction and a shift to saline conditions. These findings are in contrast to the many other palaeoclimatic records from Arabia, which suggest that during MIS 3, the latitudinal position of the monsoon was substantially further south and did not penetrate the peninsula. Additionally, the occurrence of increased rainfall at this time challenges the notion that the climate of Arabia following MIS 5 was too harsh to permit the further range expansion of indigenous communities.
It is now known that several population movements have taken place at different times throughout southern Arabian prehistory. One of the principal questions under debate is if the Early Holocene peopling of southern Arabia was mainly due to input from the Levant during the Pre-Pottery Neolithic B, to the expansion of an autochthonous population, or some combination of these demographic processes. Since previous genetic studies have not been able to include all parts of southern Arabia, we have helped fill this lacuna by collecting new population datasets from Oman (Dhofar) and Yemen (Al-Mahra and Bab el-Mandab). We identified several new haplotypes belonging to haplogroup R2 and generated its whole genome mtDNA tree with age estimates undertaken by different methods. R2, together with other considerably frequent southern Arabian mtDNA haplogroups (R0a, HV1, summing up more than 20% of the South Arabian gene pool) were used to infer the past effective population size through Bayesian skyline plots. These data indicate that the southern Arabian population underwent a large expansion already some 12 ka. A founder analysis of these haplogroups shows that this expansion is largely attributed to demographic input from the Near East. These results support thus the spread of a population coming from the north, but at a significantly earlier date than presently considered by archaeologists. Our data suggest that some of the mtDNA lineages found in southern Arabia have persisted in the region since the end of the Last Ice Age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.