BackgroundMosquitoes host diverse microbial communities that influence many aspects of their biology including reproduction, digestion, and ability to transmit pathogens. Unraveling the composition, structure, and function of these microbiota can provide new opportunities for exploiting microbial function for mosquito-borne disease control.MethodsMiSeq® sequencing of 16S rRNA gene amplicons was used to characterize the microbiota of adult females of Culex pipiens L. and Cx. restuans Theobald collected from nine study sites in central Illinois.ResultsOut of 195 bacterial OTUs that were identified, 86 were shared between the two mosquito species while 16 and 93 OTUs were unique to Cx. pipiens and Cx. restuans, respectively. The composition and structure of microbial communities differed significantly between the two mosquito species with Cx. restuans hosting a more diverse bacterial community compared to Cx. pipiens. Wolbachia (OTU836919) was the dominant bacterial species in Cx. pipiens accounting for 91 % of total microbiota while Sphingomonas (OTU817982) was the dominant bacterial species in Cx. restuans accounting for 31 % of total microbiota. Only 3 and 6 OTUs occurred in over 60 % of individuals in Cx. pipiens and Cx. restuans, respectively. There was little effect of study site on bacterial community structure of either mosquito species.ConclusionThese results suggest that the two mosquito species support distinct microbial communities that are sparsely distributed between individuals. These findings will allow investigations of the role of identified microbiota on the spatial and temporal heterogeneity in WNV transmission and their potential application in disease control.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1299-6) contains supplementary material, which is available to authorized users.
Understanding how midgut microbial communities of field-collected mosquitoes interact with pathogens is critical for controlling vector infection and disease. We used 16S rRNA and internal transcribed spacer sequencing to characterize the midgut bacterial and fungal communities of adult females of Aedes triseriatus and Aedes japonicus collected as pupae in tree holes, plastic bins and waste tires and their response to La Crosse virus (LACV) infection. For both mosquito species and across all habitat and virus treatments, a total of 62 bacterial operational taxonomic units (OTUs) from six phyla and 21 fungal OTUs from two phyla were identified. The majority of bacterial (92%) and fungal (71%) OTUs were shared between the mosquito species; however, several OTUs were unique to each species. Bacterial and fungal communities of individuals that took either infectious or noninfectious bloodmeals were less diverse and more homogeneous compared to those of newly emerged adults. Interestingly, LACV-infected A. triseriatus and A. japonicus had higher bacterial richness and lower fungal richness compared to individuals that took a noninfectious bloodmeal, suggesting that viral infection was associated with an increase in bacterial OTUs and a decrease in fungal OTUs. For both mosquito species, several OTUs were identified that had both high fidelity and specificity to mosquito midguts that were infected with LACV. Overall, these findings demonstrate that bacterial and fungal communities that reside in mosquito midguts respond to host diet and viral infection and could play a role in modulating vector susceptibility to LACV.
Despite the growing awareness that larval competition can influence adult mosquito life history traits including susceptibility to pathogens, the net effect of larval competition on human risk of exposure to mosquito-borne pathogens remains poorly understood. We examined how intraspecific larval competition affects dengue-2 virus (DENV-2) extrinsic incubation period and vectorial capacity of its natural vector Aedes albopictus. Adult Ae. albopictus from low and high-larval density conditions were orally challenged with DENV-2 and then assayed for virus infection and dissemination rates following a 6, 9, or 12-day incubation period using real-time quantitative reverse transcription PCR. We then modeled the effect of larval competition on vectorial capacity using parameter estimates obtained from peer-reviewed field and laboratory studies. Larval competition resulted in significantly longer development times, lower emergence rates, and smaller adults, but did not significantly affect the extrinsic incubation period of DENV-2 in Ae. albopictus. Our vectorial capacity models suggest that the effect of larval competition on adult mosquito longevity likely has a greater influence on vectorial capacity relative to any competition-induced changes in vector competence. Furthermore, we found that large increases in the viral dissemination rate may be necessary to compensate for small competition-induced reductions in daily survivorship. Our results indicate that mosquito populations that experience stress from larval competition are likely to have a reduced vectorial capacity, even when susceptibility to pathogens is enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.