Increasing amounts of genetic data have led to the development of polygenic risk scores (PRSs) for a variety of diseases. These scores, built from the summary statistics of genome-wide association studies (GWASs), are able to stratify individuals based on their genetic risk of developing various common diseases and could potentially be used to optimize the use of screening and preventative treatments and improve personalized care for patients. Many challenges are yet to be overcome, including PRS validation, healthcare professional and patient education, and healthcare systems integration. Ethical challenges are also present in how this information is used and the current lack of diverse populations with PRSs available. In this review, we discuss the topics above and cover the nature of PRSs, visualization schemes, and how PRSs can be improved. With these tools on the horizon for multiple diseases, scientists, clinicians, health systems, regulatory bodies, and the public should discuss the uses, benefits, and potential risks of PRSs.
BackgroundThe gut microbiota composition is known to be influenced by a myriad of factors including the host genetic profile and a number of environmental influences. Here, we focus on the environmental influence of cohabitation on the gut microbiota as well as whether these environmentally influenced microorganisms are associated with cardiometabolic and inflammatory burden. We perform this by investigating the gut microbiota composition of various groups of related individuals including cohabitating monozygotic (MZ) twin pairs, non-cohabitating MZ twin pairs and spouse pairs.ResultsA stronger correlation between alpha diversity was found in cohabitating MZ twins (45 pairs, r = 0.64, p = 2.21 × 10− 06) than in non-cohabitating MZ twin pairs (121 pairs, r = 0.42, p = 1.35 × 10− 06). Although the correlation of alpha diversity did not attain significance between spouse pairs (42 pairs, r = 0.23, p = 0.15), the correlation was still higher than those in the 209 unrelated pairs (r = − 0.015, p = 0.832). Bray-Curtis (BC) dissimilarity metrics showed cohabitating MZ twin pairs had the most similar gut microbiota communities which were more similar than the BC values of non-cohabitating MZ twins (empirical p-value = 0.0103), cohabitating spouses (empirical p-value = 0.0194), and pairs of unrelated non-cohabitating individuals (empirical p-value< 0.00001). There was also a significant difference between the BC measures from the spouse pairs and those from the unrelated non-cohabitating individuals (empirical p-value< 0.00001). Intraclass correlation coefficients were calculated between the various groups of interest and the results indicate the presence of OTUs with an environmental influence and one OTU that appeared to demonstrate genetic influences. One of the OTUs (Otu0190) was observed to have a significant association with both the cardiometabolic and inflammatory burden scores (p’s < 0.05).ConclusionsThrough the comparison of the microbiota contents of MZ twins with varying cohabitation status and spousal pairs, we showed evidence of environmentally influenced OTUs, one of which had a significant association with cardiometabolic and inflammatory burden scores.
Telomere length has garnered interest due to the potential role it may play as a biomarker for the cellular aging process. Telomere measurements obtained from blood-derived DNA are often used in epidemiological studies. However, the invasive nature of blood draws severely limits sample collection, particularly with children. Buccal cells are commonly sampled for DNA isolation and thus may present a non-invasive alternative for telomere measurement. Buccal and leukocyte derived DNA obtained from samples collected at the same time period were analyzed for telomere repeat mass (TRM). TRM was measured in buccal-derived DNA samples from individuals for whom previous TRM data from blood samples existed. TRM measurement was performed by qPCR and was normalized to the single copy 36B4 gene relative to a reference DNA sample (K562). Correlations between TRM from blood and buccal DNA were obtained and also between the same blood DNA samples measured in separate laboratories. Using the classical twin design, TRM heritability was estimated (N = 1892, MZ = 1044, DZ = 775). Buccal samples measured for TRM showed a significant correlation with the blood-1 (R = 0.39, p < 0.01) and blood-2 (R = 0.36, p < 0.01) samples. Sex and age effects were observed within the buccal samples as is the norm within blood-derived DNA. The buccal, blood-1, and blood-2 measurements generated heritability estimates of 23.3%, 47.6% and 22.2%, respectively. Buccal derived DNA provides a valid source for the determination of TRM, paving the way for non-invasive projects, such as longitudinal studies in children.
We examined the performance of methylation scores (MS) and polygenic scores (PGS) for birth weight, BMI, prenatal maternal smoking exposure, and smoking status to assess the extent to which MS could predict these traits and exposures over and above the PGS in a multi-omics prediction model. MS may be seen as the epigenetic equivalent of PGS, but because of their dynamic nature and sensitivity of non-genetic exposures may add to complex trait prediction independently of PGS. MS and PGS were calculated based on genotype data and DNA-methylation data in blood samples from adults (Illumina 450 K; N = 2,431; mean age 35.6) and in buccal samples from children (Illumina EPIC; N = 1,128; mean age 9.6) from the Netherlands Twin Register. Weights to construct the scores were obtained from results of large epigenome-wide association studies (EWASs) based on whole blood or cord blood methylation data and genome-wide association studies (GWASs). In adults, MSs in blood predicted independently from PGSs, and outperformed PGSs for BMI, prenatal maternal smoking, and smoking status, but not for birth weight. The largest amount of variance explained by the multi-omics prediction model was for current vs. never smoking (54.6%) of which 54.4% was captured by the MS. The two predictors captured 16% of former vs. never smoking initiation variance (MS:15.5%, PGS: 0.5%), 17.7% of prenatal maternal smoking variance (MS:16.9%, PGS: 0.8%), 11.9% of BMI variance (MS: 6.4%, PGS 5.5%), and 1.9% of birth weight variance (MS: 0.4%, PGS: 1.5%). In children, MSs in buccal samples did not show independent predictive value. The largest amount of variance explained by the two predictors was for prenatal maternal smoking (2.6%), where the MSs contributed 1.5%. These results demonstrate that blood DNA MS in adults explain substantial variance in current smoking, large variance in former smoking, prenatal smoking, and BMI, but not in birth weight. Buccal cell DNA methylation scores have lower predictive value, which could be due to different tissues in the EWAS discovery studies and target sample, as well as to different ages. This study illustrates the value of combining polygenic scores with information from methylation data for complex traits and exposure prediction.
Handedness has low heritability and epigenetic mechanisms have been proposed as an etiological mechanism. To examine this hypothesis, we performed an epigenome-wide association study of left-handedness. In a meta-analysis of 3914 adults of whole-blood DNA methylation, we observed that CpG sites located in proximity of handedness-associated genetic variants were more strongly associated with left-handedness than other CpG sites (P = 0.04), but did not identify any differentially methylated positions. In longitudinal analyses of DNA methylation in peripheral blood and buccal cells from children (N = 1737), we observed moderately stable associations across age (correlation range [0.355–0.578]), but inconsistent across tissues (correlation range [− 0.384 to 0.318]). We conclude that DNA methylation in peripheral tissues captures little of the variance in handedness. Future investigations should consider other more targeted sources of tissue, such as the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.