In recent years cellular automata (CA) have been successfully applied to modeling traffic flow. Use of a CA for modeling pedestrian flows is examined here. A particle hopping model for a single-directional pedestrian flow over a multilane walkway is presented. This model offers the advantage of effectively capturing the behaviors of pedestrians at the micro-level while attaining realistic macro-level activity. The emergent group behavior is an outgrowth of the interaction of the rule set in simulation. The results indicate that a heuristically derived minimal rule set produces flow patterns that closely resemble the accepted fundamental diagrams. Important parameters for determining the shape of the fundamental diagrams are examined. Key rules used in a vehicular traffic CA are tested for their applicability to the pedestrian CA model.
The cellular automata (CA) microsimulation of pedestrians is a particlehopping model in which a set of local rules prescribe the behavior of entities within local neighborhoods of cells. CA microsimulation has emerged as a tool for simulating traffic flow and modeling transportation networks. Pedestrian flow is inherently more complex than vehicular flow, and simulation models that are used for emulating vehicular traffic are not directly applicable to modeling pedestrian movements. In previous work the authors demonstrated that unidirectional pedestrian flow patterns consistent with well-established fundamental properties could be generated with CA microsimulation. This paper expands upon the previous effort and presents a CA microsimulation model and emergent fundamental flows for a bidirectional pedestrian walkway. Simulation experiments indicate that the basic model is applicable to walkways of various lengths and widths and across different directional shares of pedestrian movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.