The current predominant theapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target’s ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.
Small molecule-induced protein degradation is an attractive strategy for the development of chemical probes. One method for inducing targeted protein degradation involves the use of PROTACs, heterobifunctional molecules that can recruit specific E3 ligases to a desired protein of interest. PROTACs have been successfully used to degrade numerous proteins in cells, but the peptidic E3 ligase ligands used in previous PROTACs have hindered their development into more mature chemical probes or therapeutics. We report the design of a novel class of PROTACs that incorporate small molecule VHL ligands to successfully degrade HaloTag7 fusion proteins. These HaloPROTACs will inspire the development of future PROTACs with more drug-like properties. Additionally, these HaloPROTACs are useful chemical genetic tools, due to their ability to chemically knockdown widely used HaloTag7 fusion proteins in a general fashion.
E3 ubiquitin ligases, such as the therapeutically relevant VHL, are challenging targets for traditional medicinal chemistry, as their modulation requires targeting protein-protein interactions. We report novel small-molecule inhibitors of the interaction between VHL and its molecular target HIF1α, a transcription factor involved in oxygen sensing.
Despite the widespread use of axially chiral, or atropisomeric, biaryl ligands in modern synthesis, and the occurrence of numerous natural products exhibiting axial chirality, general catalytic methods for the direct asymmetric preparation of this compound class have proven elusive. Here we present a tripeptide-derived small molecule catalyst for the dynamic kinetic resolution of racemic biaryl substrates. The reaction proceeds via an atropisomer-selective electrophilic aromatic substitution reaction employing simple bromination reagents. The result is an enantioselective synthesis that delivers chiral non-racemic biaryl compounds with excellent optical purity and good isolated chemical yields (in most cases >95:5 enantiomer ratio and isolated yields 65 to 87%). A mechanistic model is advanced that explains the basis of selectivity observed.
Atropisomerism is a dynamic type of axial chirality that is ubiquitous in medicinal chemistry. There are several examples of stable atropisomeric US FDA-approved drugs and experimental compounds, and in each case the atropisomers of these compounds possess drastically different biological activities. Rapidly interconverting atropisomerism is even more prevalent, and while such compounds are typically considered achiral, they bind their protein targets in an atroposelective fashion, with the nonrelevant atropisomer contributing little to the desired activities. It has been recently demonstrated that various properties of an interconverting atropisomer can be modulated through the synthesis of atropisomer stable and pure analogs. Herein we discuss examples of atropisomerism in drug discovery as well as challenges and opportunities moving forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.