Acute episodes of severe renal ischemia result in acute renal failure (ARF). These episodes are followed by a characteristic recovery and repair response, whereby tubular morphology and renal function appear completely restored within approximately 1 mo. However, the chronic effects of such an injury have not been well studied. Male rats were subjected to 60-min bilateral ischemia followed by reperfusion, yielding a characteristic injury. Postischemic animals manifested severe diuresis, peaking at 1 wk postinjury (volume: >45 ml/day, ARF vs. 18 ml/day, sham; P < 0.05). Urine flow subsequently declined but remained significantly elevated vs. sham animals for a 40-wk period. The prolonged alteration in urinary concentrating ability was attributable, in part, to a diminished capacity to generate a hypertonic medullary interstitium. By week 16, proteinuria developed in the post-ARF group and progressed for the duration of the study. Histological examination revealed essentially normal tubular morphology at 4 and 8 wk postinjury but the development of tubulointerstitial fibrosis at 40 wk. Transforming growth factor (TGF)-beta1 expression was elevated at 40 wk, but not at 4 and 8 wk postinjury. Microfil analysis revealed an approximately 30-50% reduction in peritubular capillary density in the inner stripe of the outer medulla at 4, 8, and 40 wk in post-ARF groups vs. sham animals. In addition, post-ARF rats manifested a significant pressor response to a low dose of ANG II (15 ng x kg(-1) x min(-1)). We hypothesize that severe ischemic injury results in a permanent alteration of renal capillary density, contributing to a urinary concentrating defect and the predisposition toward the development of renal fibrosis.
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Acute episodes of severe renal ischemia result in acute renal failure (ARF). These episodes are followed by a characteristic recovery and repair response, whereby tubular morphology and renal function appear completely restored within approximately 1 mo. However, the chronic effects of such an injury have not been well studied. Male rats were subjected to 60-min bilateral ischemia followed by reperfusion, yielding a characteristic injury. Postischemic animals manifested severe diuresis, peaking at 1 wk postinjury (volume: >45 ml/day, ARF vs. 18 ml/day, sham; P < 0.05). Urine flow subsequently declined but remained significantly elevated vs. sham animals for a 40-wk period. The prolonged alteration in urinary concentrating ability was attributable, in part, to a diminished capacity to generate a hypertonic medullary interstitium. By week 16, proteinuria developed in the post-ARF group and progressed for the duration of the study. Histological examination revealed essentially normal tubular morphology at 4 and 8 wk postinjury but the development of tubulointerstitial fibrosis at 40 wk. Transforming growth factor (TGF)-beta1 expression was elevated at 40 wk, but not at 4 and 8 wk postinjury. Microfil analysis revealed an approximately 30-50% reduction in peritubular capillary density in the inner stripe of the outer medulla at 4, 8, and 40 wk in post-ARF groups vs. sham animals. In addition, post-ARF rats manifested a significant pressor response to a low dose of ANG II (15 ng x kg(-1) x min(-1)). We hypothesize that severe ischemic injury results in a permanent alteration of renal capillary density, contributing to a urinary concentrating defect and the predisposition toward the development of renal fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.