The investigation of protein structures, functions and interactions often requires modifications to adapt protein properties to the specific application. Among many possible methods to equip proteins with new chemical groups, the utilization of orthogonal aminoacyl-tRNA synthetase/tRNA pairs enables the site-specific incorporation of non-canonical amino acids at defined positions in the protein. The open nature of cell-free protein synthesis reactions provides an optimal environment, as the orthogonal components do not need to be transported across the cell membrane and the impact on cell viability is negligible. In the present work, it was shown that the expression of orthogonal aminoacyl-tRNA synthetases in CHO cells prior to cell disruption enhanced the modification of the pharmaceutically relevant adenosine A2a receptor. For this purpose, in complement to transient transfection of CHO cells, an approach based on CRISPR/Cas9 technology was selected to generate a translationally active cell lysate harboring endogenous orthogonal aminoacyl-tRNA synthetase.
Cell-free protein synthesis (CFPS) represents a versatile key technology for the production of toxic proteins. As a cell lysate, rather than viable cells, is used, the toxic effects on the host organism can be circumvented. The open nature of cell-free systems allows for the addition of supplements affecting protein concentration and folding. Here, we present the cell-free synthesis and functional characterization of two AB5 toxins, namely the cholera toxin (Ctx) and the heat-labile enterotoxin (LT), using two eukaryotic cell-free systems based on Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cells. Through an iterative optimization procedure, the synthesis of the individual AB5 toxins was established, and the formation of multimeric structures could be shown by autoradiography. A functional analysis was performed using cell-based assays, thereby demonstrating that the LT complex induced the characteristic cell elongation of target cells after 24 h. The LT complex induced cell death at higher concentrations, starting at an initial concentration of 5 nM. The initial toxic effects of the Ctx multimer could already be detected at 4 nM. The detection and characterization of such AB5 toxins is of utmost importance, and the monitoring of intracellular trafficking facilitates the further identification of the mechanism of action of these toxins. We showed that the B-subunit of LT (LTB) could be fluorescently labeled using an LTB-Strep fusion protein, which is a proof-of-concept for future Trojan horse applications. Further, we performed a mutational analysis of the CtxA subunit as its template was modified, and an amber stop codon was inserted into CtxA’s active site. Subsequently, a non-canonical amino acid was site-specifically incorporated using bio-orthogonal systems. Finally, a fluorescently labeled CtxA protein was produced using copper-catalyzed click reactions as well as a Staudinger ligation. As expected, the modified Ctx multimer no longer induced toxic effects. In our study, we showed that CFPS could be used to study the active centers of toxins by inserting mutations. Additionally, this methodology can be applied for the design of Trojan horses and targeted toxins, as well as enabling the intracellular trafficking of toxins as a prerequisite for the analysis of the toxin’s mechanism of action.
With more than 20 Food and Drug Administration (FDA)-approved poly (ethylene glycol) (PEG) modified drugs on the market, PEG is the gold standard polymer in bioconjugation. The coupling improves stability, efficiency and can prolong blood circulation time of therapeutic proteins. Even though PEGylation is described as non-toxic and non-immunogenic, reports accumulate with data showing allergic reactions to PEG. Since PEG is not only applied in therapeutics, but can also be found in foods and cosmetics, anti-PEG-antibodies can occur even without a medical treatment. Hypersensitivity to PEG thereby can lead to a reduced drug efficiency, fast blood clearance and in rare cases anaphylactic reactions. Therefore, finding alternatives for PEG is crucial. In this study, we present linear polyglycerol (LPG) for bioconjugation as an alternative polymer to PEG. We report the conjugation of LPG and PEG by click-chemistry to the glycoprotein erythropoietin (EPO), synthesized in a eukaryotic cell-free protein synthesis system. Furthermore, the influence of the polymers on EPOs stability and activity on a growth hormone dependent cell-line was evaluated. The similar characteristics of both bioconjugates show that LPGylation can be a promising alternative to PEGylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.