When insect population density varies within the same cotton field, estimation of abundance is difficult. Multiple population densities of the same species occur because cotton fields (due to edaphic and environmental effects) are apportioned into various habitats that are colonized at different rates. These various habitats differ temporally in their spatial distributions, exhibiting varying patterns of interspersion, shape and size. Therefore, when sampling multiple population densities without considering the influence of habitat structure, the estimated population mean represents a summary of diverse population distributions having different means and variances. This single estimate of mean abundance can lead to pest management decisions that are incorrect because it may over-or under-estimate pest density in different areas of the field. Delineation of habitat classes is essential in order to make local control decisions. Within large commercial cotton fields, it is too laborious for observers on the ground to map habitat boundaries, but remote sensing can efficiently create geo-referenced, stratified maps of cotton field habitats. By employing these maps, a simple random sampling design and larger sample unit sizes, it is possible to estimate pest abundance in each habitat without large numbers of samples. Estimates of pest abundance by habitat, when supplemented with ecological precepts and consultant/producer experience, provide the basis for spatial approaches to pest control. Using small sample sizes, the integrated sampling methodology maps the spatial abundance of a cotton insect pest across several large cotton fields.
Rice (Oryza sativa L.) is the primary staple food source for more than half of the world’s population. In many developing countries, increased use of fertilizers is a response to increase demand for rice. In this study, we investigated the effects of three principal fertilizer components (nitrogen, phosphorus and potassium) on the development of potted rice plants and their effects on fitness traits of the brown planthopper (BPH) [Nilaparvata lugens (Stål) (Homoptera: Delphacidae)], which is a major pest of rice in Bangladesh and elsewhere. Compared to low fertilizer inputs, high fertilizer treatments induced plant growth but also favored BPH development. The BPH had higher survival, developed faster, and the intrinsic rate of natural increase (r
m) was higher on well-fertilized than under-fertilized plants. Among the fertilizer inputs, nitrogen had the strongest effect on the fitness traits of BPH. Furthermore, both the “Plant vigor hypothesis” and the “Plant stress hypothesis” were supported by the results, the former hypothesis more so than the latter. These hypotheses suggest that the most suitable/attractive hosts for insect herbivores are the most vigorous plants. Our findings emphasized that an exclusive focus on yield increases through only enhanced crop fertilization may have unforeseen, indirect, effects on crop susceptibility to pests, such as BPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.