Canine degenerative mitral valve disease (DMVD) is the most common form of heart disease in dogs. The objective of this study was to identify cellular and metabolic pathways that play a role in DMVD by performing metabolomics and transcriptomics analyses on serum and tissue (mitral valve and left ventricle) samples previously collected from dogs with DMVD or healthy hearts. Gas or liquid chromatography followed by mass spectrophotometry were used to identify metabolites in serum. Transcriptomics analysis of tissue samples was completed using RNA-seq, and selected targets were confirmed by RT-qPCR. Random Forest analysis was used to classify the metabolites that best predicted the presence of DMVD. Results identified 41 known and 13 unknown serum metabolites that were significantly different between healthy and DMVD dogs, representing alterations in fat and glucose energy metabolism, oxidative stress, and other pathways. The three metabolites with the greatest single effect in the Random Forest analysis were γ-glutamylmethionine, oxidized glutathione, and asymmetric dimethylarginine. Transcriptomics analysis identified 812 differentially expressed transcripts in left ventricle samples and 263 in mitral valve samples, representing changes in energy metabolism, antioxidant function, nitric oxide signaling, and extracellular matrix homeostasis pathways. Many of the identified alterations may benefit from nutritional or medical management. Our study provides evidence of the growing importance of integrative approaches in multi-omics research in veterinary and nutritional sciences.
Antioxidant enzymes, such as catalase, superoxide dismutases (SOD), MnSOD and Cu/ZnSOD, protect cells by scavenging reactive oxygen species (ROS). Numerous studies have reported the anti-cancer effects of 1,25-dihydroxyvitamin D3 (calcitriol) and its related analogues, seocalcitol and analogue V. In this study, canine bladder transitional cell carcinoma (cbTCC) cells were used to determine effects of calcitriol and its related analogues on antioxidant enzyme gene expression, protein expression and activity. Catalase mRNA was increased in response to calcitriol (10(-7) M), and seocalcitol (10(-7) and 10(-9) M). MnSOD mRNA was decreased in response to calcitriol at 10(-7) M. Catalase was significantly increased in response to calcitriol (10(-7) and 10(-9) M), and seocalcitol (10(-9) M). Catalase enzymatic activity increased in response to calcitriol, seocalcitol and analogue V (10(-9) M). In addition, global gene expression analysis identified the involvement of mitogen-activated protein kinase (MAPK) signalling in cbTCC's response to calcitriol and seocalcitol treatment.
BackgroundA higher prevalence of inherited disorders among companion animals are often rooted in their historical restricted artificial selection for a variety of observed phenotypes that eventually decreased genetic diversity. Cats have been afflicted with many inherited diseases due to domestication and intense breed selection. Advances in sequencing technology have generated a more comprehensive way to access genetic information from an individual, allowing identification of putative disease-causing variants and in practice a means to avoid their spread and thus better pedigree management. We examine variants in three domestic shorthair cats and then calculated overall genetic diversity to extrapolate the benefits of this data for breeding programs within a feline colony.ResultsWe generated whole genome sequence (WGS) data for three related cats that belong to a large feline pedigree colony. Genome-wide coverage ranged from 27-32X, from which we identified 18 million variants in total. Previously known disease-causing variants were screened in our cats, but none carry any of these known disease alleles. Loss of function (LoF) variants, that are in genes associated with a detrimental phenotype in human or mice were chosen for further evaluation on the comparative impact inferred. A set of LoF variants were observed in four genes, each with predicted detrimental phenotypes as a result. However, none of our cats displayed the expected disease phenotypes. Inbreeding coefficients and runs of homozygosity were also evaluated as a measure of genetic diversity. We find low inbreeding coefficients and total runs of homozygosity, thus suggesting pedigree management of genetic relatedness is acceptable.ConclusionsThe use of WGS of a small sampling among a large feline colony has enabled us to identify possible disease-causing variants, their genotype state and measure pedigree management of genetic diversity. We contend a limited but strategic sampling of feline colony individuals using WGS can inform veterinarians of future health anomalies and guide breeding practices to ensure healthy genetic diversity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-017-1144-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.