Osteoblast lineage-specific differentiation of mesenchymal stem cells is a well regulated but poorly understood process. Both bone morphogenetic proteins (BMPs) and Wnt signaling are implicated in regulating osteoblast differentiation and bone formation. Here we analyzed the expression profiles of mesenchymal stem cells stimulated with Wnt3A and osteogenic BMPs, and we identified connective tissue growth factor (CTGF) as a potential target of Wnt and BMP signaling. We confirmed the microarray results, and we demonstrated that CTGF was up-regulated at the early stage of BMP-9 and Wnt3A stimulations and that Wnt3A-regulated CTGF expression was -catenin-dependent. RNA interference-mediated knockdown of CTGF expression significantly diminished BMP-9-induced, but not Wnt3A-induced, osteogenic differentiation, suggesting that Wnt3A may also regulate osteoblast differentiation in a CTGF-independent fashion. However, constitutive expression of CTGF was shown to inhibit both BMP-9-and Wnt3A-induced osteogenic differentiation. Exogenous expression of CTGF was shown to promote cell migration and recruitment of mesenchymal stem cells. Our findings demonstrate that CTGF is up-regulated by Wnt3A and BMP-9 at the early stage of osteogenic differentiation, which may regulate the proliferation and recruitment of osteoprogenitor cells; however, CTGF is down-regulated as the differentiation potential of committed pre-osteoblasts increases, strongly suggesting that tight regulation of CTGF expression may be essential for normal osteoblast differentiation of mesenchymal stem cells.
Bone morphogenetic proteins (BMPs) belong to the TGF- superfamily and play an important role in development and in many cellular processes. We have found that BMP-2, BMP-6, and BMP-9 induce the most potent osteogenic differentiation of mesenchymal stem cells. Expression profiling analysis has revealed that the Inhibitors of DNA binding/differentiation (Id)-1, Id-2, and Id-3 are among the most significantly up-regulated genes upon BMP-2, BMP-6, or BMP-9 stimulation. Here, we sought to determine the functional role of these Id proteins in BMP-induced osteoblast differentiation. We demonstrated that the expression of Id-1, Id-2, and Id-3 genes was significantly induced at the early stage of BMP-9 stimulation and returned to basal levels at 3 days after stimulation. RNA interference-mediated knockdown of Id expression significantly diminished the BMP-9-induced osteogenic differentiation of mesenchymal progenitor cells. Surprisingly, a constitutive overexpression of these Id genes also inhibited osteoblast differentiation initiated by BMP-9. Furthermore, we demonstrated that BMP-9-regulated Id expression is Smad4-dependent. Overexpression of the three Id genes was shown to promote cell proliferation that was coupled with an inhibition of osteogenic differentiation. Thus, our findings suggest that the Id helix-loop-helix proteins may play an important role in promoting the proliferation of early osteoblast progenitor cells and that Id expression must be down-regulated during the terminal differentiation of committed osteoblasts, suggesting that a balanced regulation of Id expression may be critical to BMP-induced osteoblast lineage-specific differentiation of mesenchymal stem cells.Bone formation is a well orchestrated process of osteoblast lineage-specific differentiation (1). During osteogenesis, pluripotent mesenchymal stem cells differentiate into preosteoblasts rather than serve as progenitor cells for myocytes, adipocytes, or chondrocytes. These preosteoblasts then differentiate into mature osteoblasts that deposit the necessary components to form bone matrix and allow subsequent mineralization. Bone morphogenetic proteins (BMPs) 1 play an important role in regulating osteoblast differentiation and subsequent bone formation (2, 3). BMPs belong to the TGF- superfamily and play an important role in development (4, 5). At least 15 types of BMPs have been identified in humans (4, 6 -8). Genetic disruptions of BMPs have resulted in various skeletal and extraskeletal developmental abnormalities (9).BMP signaling activity is initiated by interaction with the heterodimeric complex of two transmembrane serine/threonine kinase receptors, BMPR types I and II (10, 11) The activated receptor kinases phosphorylate the transcription factors Smads 1, 5, or 8. The phosphorylated Smads then form heterodimeric complexes with Smad4 and activate the expression of target genes in concert with other co-activators (12-14).We have conducted a comprehensive analysis of the osteogenic activity of 14 types of human BMPs (i.e. BMP-2 to BM...
Efficacious bone regeneration could revolutionize the clinical management of many bone and musculoskeletal disorders. Bone has the unique ability to regenerate and continuously remodel itself throughout life. However, clinical situations arise when bone is unable to heal itself, as with segmental bone loss, fracture non-union, and failed spinal fusion. This leads to significant morbidity and mortality. Current attempts at improved bone healing have been met with limited success, fueling the development of improved techniques. Gene therapy in many ways represents an ideal approach for augmenting bone regeneration. Gene therapy allows specific gene products to be delivered to a precise anatomic location. In addition, the level of transgene expression as well as the duration of expression can be regulated with current techniques. For bone regeneration, the gene of interest should be delivered to the fracture site, expressed at appropriate levels, and then deactivated once the fracture has healed. Delivery of biological factors, mostly bone morphogenetic proteins (BMPs), has yielded promising results both in animal and clinical studies. There has also been tremendous work on discovering new growth factors and exploring previously defined ones. Finally, significant advances are being made in the delivery systems of the genes, ranging from viral and non-viral vectors to tissue engineering scaffolds. Despite some public hesitation to gene therapy, its use has great potential to expand our ability to treat a variety of human bone and musculoskeletal disorders. It is conceivable that in the near future gene therapy can be utilized to induce bone formation in virtually any region of the body in a minimally invasive manner. As bone biology and gene therapy research progresses, the goal of successful human gene transfer for augmentation of bone regeneration draws nearer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.