Extensive evidence has demonstrated an important role of oxygen radical formation (i.e. oxidative stress) as a mediator of the secondary injury process that occurs following primary mechanical injury to the brain or spinal cord. The predominant form of oxygen radical-induced oxidative damage that occurs in injured nervous tissue is lipid peroxidation (LP). Much of the oxidative stress in injured nerve cells initially begins in mitochondria via the generation of the reactive nitrogen species peroxynitrite (PN) which then can generate multiple highly reactive free radicals including nitrogen dioxide (•NO2), hydroxyl radical (•OH) and carbonate radical (•CO3). Each can readily induce LP within the phospholipid membranes of the mitochondrion leading to respiratory dysfunction, calcium buffering impairment, mitochondrial permeability transition and cell death. Validation of the role of LP in central nervous system secondary injury has been provided by the mitochondrial and neuroprotective effects of multiple antioxidant agents which are briefly reviewed.
An important role for oxygen radical-mediated neuronal damage has been implicated in a number of acute and chronic neurodegenerative disorders. Particular interest has centered upon oxygen radical-induced, iron-catalyzed lipid peroxidation (LP) as the principal mechanism of the neuronal injury associated with oxygen radicals. Thus, there has been a growing interest in methods for monitoring increased oxygen radical levels as an index of oxidative stress as well as markers of LP-associated oxidative injury in a number of in vitro and in vivo model systems. This unit provides a detailed description of the salicylate trapping method for the measurement of the most highly reactive oxygen radical, the hydroxyl radical, as well as several direct or indirect methods for assessment of cellular LP in either cell cultures or in in vivo models.
We have investigated the detection, confirmation, and metabolism of the beta-adrenergic agonist ractopamine administered as Paylean to the horse. A Testing Components Corporation enzyme-linked imunosorbent assay (ELISA) kit for ractopamine displayed linear response between 1.0 and 100 ng/mL with an I-50 of 10 ng/mL and an effective screening limit of detection of 50 ng/mL. The kit was readily able to detect ractopamine equivalents in unhydrolyzed urine up to 24 h following a 300-mg oral dose. Gas chromatography-mass spectrometry (GC-MS) confirmation comprised glucuronidase treatment, solid-phase extraction, and trimethylsilyl derivatization, with selected-ion monitoring of ractopamine-tris(trimethylsilane) (TMS) m/z 267, 250, 179, and 502 ions. Quantitation was elaborated in comparison to a 445 Mw isoxsuprine-bis(TMS) internal standard monitored simultaneously. The instrumental limit of detection, defined as that number of ng on column for which signal-to-noise ratios for one or more diagnostic ions fell below a value of three, was 0.1 ng, corresponding to roughly 5 ng/mL in matrix. Based on the quantitation ions for ractopamine standards extracted from urine, standard curves showed a linear response for ractopamine concentrations between 10 and 100 ng/mL with a correlation coefficient r > 0.99, whereas standards in the concentration range of 10-1000 ng/mL were fit to a second-order regression curve with r > 0.99. The lower limit of detection for ractopamine in urine, defined as the lowest concentration at which the identity of ractopamine could be confirmed by comparison of diagnostic MS ion ratios, ranged between 25 and 50 ng/mL. Urine concentration of parent ractopamine 24 h post-dose was measured at 360 ng/mL by GC-MS after oral administration of 300 mg. Urinary metabolites were identified by electrospray ionization (+) tandem quadrupole mass spectrometry and were shown to include glucuronide, methyl, and mixed methyl-glucuronide conjugates. We also considered the possibility that an unusual conjugate added 113 amu to give an observed m/z 415 [M+H] species or two times 113 amu to give an m/z 528 [M+H] species with a daughter ion mass spectrum related to the previous one. Sulfate and mixed methyl-sulfate conjugates were revealed following glucuronidase treatment, suggesting that sulfation occurs in combination with glucuronidation. We noted a paired chromatographic peak phenomenon of apparent ractopamine metabolites appearing as doublets of equivalent intensity with nearly identical mass spectra on GC-MS and concluded that this phenomenon is consistent with Paylean being a mixture of RR, RS, SR, and SS diastereomers of ractopamine. The results suggest that ELISA-based screening followed by glucuronide hydrolysis, parent drug recovery, and TMS derivatization provide an effective pathway for detection and GC-MS confirmation of ractopamine in equine urine.
Remifentanil (4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidinepropionic acid methyl ester) is a mu-opioid receptor agonist with considerable abuse potential in racing horses. The identification of its major equine urinary metabolite, 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidinepropionic+ ++ acid, an ester hydrolysis product of remifentanil is reported. Administration of remifentanil HCl (5 mg, intravenous) produced clear-cut locomotor responses, establishing the clinical efficacy of this dose. ELISA analysis of postadministration urine samples readily detected fentanyl equivalents in these samples. Mass spectrometric analysis, using solid-phase extraction and trimethylsilyl (TMS) derivatization, showed the urine samples contained parent remifentanil in low concentrations, peaking at 1 h. More significantly, a major peak was identified as representing 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidinepropionic+ ++ acid, arising from ester hydrolysis of remifentanil. This metabolite reached its maximal urinary concentrations at 1 h and was present at up to 10-fold greater concentrations than parent remifentanil. Base hydrolysis of remifentanil yielded a carboxylic acid with the same mass spectral characteristics as those of the equine metabolite. In summary, these data indicate that remifentanil administration results in the appearance of readily detectable amounts of 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1-piperidinepropionic+ ++ acid in urine. On this basis, screening and confirmation tests for this equine urinary metabolite should be optimized for forensic control of remifentanil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.