We present details of the construction and characterization of the coaddition of the Sloan Digital Sky Survey Stripe 82 ugriz imaging data. This survey consists of 275 deg 2 of repeated scanning by the SDSS camera of 2.5 • of δ over −50 • ≤ α ≤ 60 • centered on the Celestial Equator. Each piece of sky has ∼ 20 runs contributing and thus reaches ∼ 2 magnitudes fainter than the SDSS single pass data, i.e. to r ∼ 23.5 for galaxies. We discuss the image processing of the coaddition, the modeling of the PSF, the calibration, and the production of standard SDSS catalogs. The data have r-band median seeing of 1.1 , and are calibrated to ≤ 1%. Star color-color, number counts, and psf size vs modelled size plots show the modelling of the PSF is good enough for precision 5-band photometry. Structure in the psf-model vs magnitude plot show minor psf mis-modelling that leads to a region where stars are being mis-classified as galaxies, and this is verified using VVDS spectroscopy. As this is a wide area deep survey there are a variety of uses for the data, including galactic structure, photometric redshift computation, cluster finding and cross wavelength measurements, weak lensing cluster mass calibrations, and cosmic shear measurements.
We present a weak lensing analysis of the Coma Cluster using the Sloan Digital Sky Survey (SDSS) Data Release Five. Complete imaging of a ∼ 200 square degree region is used to measure the tangential shear of this cluster. The shear is fit to an NFW model and we find a virial radius of r 200 = 1.99 +0.21 −0.22 h −1 Mpc which corresponds to a virial mass of M 200 = 1.88 +0.65 −0.56 × 10 15 h −1 M ⊙ . We additionally compare our weak lensing measurement to the virial mass derived using dynamical techniques, and find they are in agreement. This is the lowest redshift, largest angle weak lensing measurement of an individual cluster to date.
We present measurements of two types of cluster galaxy alignments based on a volume limited and highly pure ( 90%) sample of clusters from the GMBCG catalog derived from Data Release 7 of the Sloan Digital Sky Survey (SDSS DR7). We detect a clear brightest cluster galaxy (BCG) alignment (the alignment of major axis of the BCG toward the distribution of cluster satellite galaxies). We find that the BCG alignment signal becomes stronger as the redshift and BCG absolute magnitude decrease and becomes weaker as BCG stellar mass decreases. No dependence of the BCG alignment on cluster richness is found. We can detect a statistically significant ( 3σ ) satellite alignment (the alignment of the major axes of the cluster satellite galaxies toward the BCG) only when we use the isophotal fit position angles (P.A.s), and the satellite alignment depends on the apparent magnitudes rather than the absolute magnitudes of the BCGs. This suggests that the detected satellite alignment based on isophotal P.A.s from the SDSS pipeline is possibly due to the contamination from the diffuse light of nearby BCGs. We caution that this should not be simply interpreted as non-existence of the satellite alignment, but rather that we cannot detect them with our current photometric SDSS data. We perform our measurements on both SDSS r-band and i-band data, but do not observe a passband dependence of the alignments.
Stripe 82 in the Sloan Digital Sky Survey was observed multiple times, allowing deeper images to be constructed by coadding the data. Here we analyze the ellipticities of background galaxies in this 275 square degree region, searching for evidence of distortions due to cosmic shear. The E-mode is detected in both real and Fourier space with > 5-σ significance on degree scales, while the B-mode is consistent with zero as expected. The amplitude of the signal constrains the combination of the matter density Ω m and fluctuation amplitude σ 8 to be Ω 0.7 m σ 8 = 0.252 +0.032 −0.052 .
Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z < 0.4. Aims. To help us extend our knowledge of ICL properties to higher redshifts and study the evolution of ICL with redshift, we search for ICL in a subsample of ten clusters detected by the ESO Distant Cluster Survey (EDisCS), at redshifts 0.4 < z < 0.8, that are also part of our DAFT/FADA Survey. Methods. We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results. In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ∼50 × 50 kpc 2 area, with a total absolute magnitude of −21.6 in the F814W filter, equivalent to about two L * galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to the faint dwarf galaxies of the Local Group. Conclusions. We show that the ICL is prevalent in clusters at least up to redshift z = 0.8. In the future, we propose to detect the ICL at even higher redshifts, to determine wether there is a particular stage of cluster evolution where it was stripped from galaxies and spread into the intracluster medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.