Inflammation may underlie the metabolic disorders of insulin resistance and type 2 diabetes. IkappaB kinase beta (IKK-beta, encoded by Ikbkb) is a central coordinator of inflammatory responses through activation of NF-kappaB. To understand the role of IKK-beta in insulin resistance, we used mice lacking this enzyme in hepatocytes (Ikbkb(Deltahep)) or myeloid cells (Ikbkb(Deltamye)). Ikbkb(Deltahep) mice retain liver insulin responsiveness, but develop insulin resistance in muscle and fat in response to high fat diet, obesity or aging. In contrast, Ikbkb(Deltamye) mice retain global insulin sensitivity and are protected from insulin resistance. Thus, IKK-beta acts locally in liver and systemically in myeloid cells, where NF-kappaB activation induces inflammatory mediators that cause insulin resistance. These findings demonstrate the importance of liver cell IKK-beta in hepatic insulin resistance and the central role of myeloid cells in development of systemic insulin resistance. We suggest that inhibition of IKK-beta, especially in myeloid cells, may be used to treat insulin resistance.
Summary An in vivo screen was performed in search of chemicals capable of enhancing neuron formation in the hippocampus of adult mice. Eight of 1,000 small molecules tested enhanced neuron formation in the subgranular zone of the dentate gyrus. Among these was an aminopropyl carbazole, designated P7C3, endowed with favorable pharmacological properties. In vivo studies gave evidence that P7C3 exerts its pro-neurogenic activity by protecting newborn neurons from apoptosis. Mice missing the gene encoding neuronal PAS domain protein 3 (NPAS3) are devoid of hippocampal neurogenesis and display malformation and electrophysiological dysfunction of the dentate gyrus. Prolonged administration of P7C3 to npas3-/- mice corrected these deficits by normalizing levels of apoptosis of newborn hippocampal neurons. Prolonged administration of P7C3 to aged rats also enhanced neurogenesis in the dentate gyrus, impeded neuron death, and preserved cognitive capacity as a function of terminal aging.
Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian nicotinamide-adenine dinucleotide-dependent deacetylase SIRT1 impacts different processes potentially involved in the maintenance of brain integrity, such as chromatin remodeling, DNA repair, cell survival, and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms, we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning, and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knock-out (KO) mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but displayed a decrease in dendritic branching, branch length, and complexity of neuronal dendritic arbors. Also, a decrease in extracellular signal-regulated kinase 1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism, and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory, and synaptic plasticity in mice.
The "classical" organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471-6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knockout mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of ϳ60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.
The adult brain contains neural stem cells that are capable of proliferating, differentiating into neurons or glia, and then either surviving or dying. This process of neural-cell production (neurogenesis) in the dentate gyrus of the hippocampus is responsive to brain injury, and both mental and physical activity. We now report that neurogenesis in the dentate gyrus can also be modified by diet. Previous studies have shown that dietary restriction (DR) can suppress age-related deficits in learning and memory, and can increase resistance of neurons to degeneration in experimental models of neurodegenerative disorders. We found that maintenance of adult rats on a DR regimen results in a significant increase in the numbers of newly produced neural cells in the dentate gyrus of the hippocampus, as determined by stereologic analysis of cells labeled with the DNA precursor analog bromodeoxyuridine. The increase in neurogenesis in rats maintained on DR appears to result from decreased death of newly produced cells, rather than from increased cell proliferation. We further show that the expression of brain-derived neurotrophic factor, a trophic factor recently associated with neurogenesis, is increased in hippocampal cells of rats maintained on DR. Our data are the first evidence that diet can affect the process of neurogenesis, as well as the first evidence that diet can affect neurotrophic factor production. These findings provide insight into the mechanisms whereby diet impacts on brain plasticity, aging and neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.