Exertional compartment syndrome has been described and implicated in pain syndromes involving several fascial compartments. This entity is classically characterized in the legs, feet and forearms of athletes. We describe a case of acute, severe exertional compartment syndrome of the paraspinal muscles in a young and healthy male ultimately resulting in significant rhabdomyolysis and acute kidney injury. The rarity of the syndrome has prevented the establishment of specific guidelines for management; therefore, we will discuss this case in the context of similar previously reported cases, contrasting the various treatment approaches and outcomes described in previous reports. This discussion outlines a syndrome not commonly considered in the differential diagnosis of back pain.
Examination of how the ankle and midtarsal joints modulate stiffness in response to increased force demand will aid understanding of overall limb function and inform the development of bio-inspired assistive and robotic devices. The purpose of this study is to identify how ankle and midtarsal joint quasi-stiffness are affected by added body mass during over-ground walking. Healthy participants walked barefoot over-ground at 1.25 m/s wearing a weighted vest with 0%, 15% and 30% additional body mass. The effect of added mass was investigated on ankle and midtarsal joint range of motion (ROM), peak moment and quasi-stiffness. Joint quasi-stiffness was broken into two phases, dorsiflexion (DF) and plantarflexion (PF), representing approximately linear regions of their moment-angle curve. Added mass significantly increased ankle joint quasi-stiffness in DF (p < 0.001) and PF (p < 0.001), as well as midtarsal joint quasi-stiffness in DF (p < 0.006) and PF (p < 0.001). Notably, the midtarsal joint quasi-stiffness during DF was ~2.5 times higher than that of the ankle joint. The increase in midtarsal quasi-stiffness when walking with added mass could not be explained by the windlass mechanism, as the ROM of the metatarsophalangeal joints was not correlated with midtarsal joint quasi-stiffness (r = −0.142, p = 0.540). The likely source for the quasi-stiffness modulation may be from active foot muscles, however, future research is needed to confirm which anatomical structures (passive or active) contribute to the overall joint quasi-stiffness across locomotor tasks.
Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Twenty participants were recruited to test two forms of instability: using one dumbbell rather than two and lifting on the COR bench compared to a flat bench. Electromyography (EMG) amplitudes of the pectoralis major, middle trapezius, external oblique, and internal oblique were recorded and compared. Differences in range of motion (ROM) were evaluated by measuring an angular representation of the shoulder complex. Four separate conditions of unilateral bench press were tested while lifting on a: flat bench with one dumbbell, flat bench with two dumbbells, COR Bench with one dumbbell, and COR Bench with two dumbbells. The results imply that there are no differences in EMG amplitude or ROM between the COR bench and traditional bench. However, greater ROM was found to be utilized in the single dumbbell condition, both in the COR bench and the flat bench.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.