The quantitative effects of dislocations on the electrical and optical properties of long-wavelength infrared (LWIR) HgCdTe photovoltaic detectors was determined by deliberately introducing dislocations into localized regions of two high-performance arrays having cutoff wavelengths of 9.5 and 10.3 μm at T=78 K. Results show that dislocations can have a dramatic effect on detector R0A product, particularly at temperatures below 78 K. For large dislocation densities, R0A decreases as the square of the dislocation density; the onset of the square dependence occurs at progressively lower dislocation densities as the temperature decreases. A phenomenological model was developed which describes the dependence of the detector R0A product with dislocation density, based on the conductances of individual and interacting dislocations which shunt the p–n junction. Spectral response and quantum efficiency are only weakly affected, as is the diffusion component of the leakage current. The 1/f noise current was found to increase approximately linearly with dislocation density and also tracks with the magnitude of the leakage current similar to a data trendline established for undamaged HgCdTe detectors. These results can be used to understand the performance limitations of LWIR HgCdTe arrays fabricated on heteroepitaxial substrates.
A common policy prescription for conserving irrigation water is to promote more efficient or “water-saving” irrigation technologies. We develop a risk-programing model to quantify the effect of irrigation efficiency on irrigation water use in the High Plains, taking account of irrigation timing and well capacity limits. We find that optimal irrigation does not respond monotonically to changes in efficiency, although intermediate and high-efficiency systems both result in less water use than an inefficient flood system. Copyright 2005, Oxford University Press.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.