The COVID-19 pandemic has led to accelerated efforts to develop therapeutics and vaccines. A key target of these efforts is the spike (S) protein, which is metastable and difficult to produce recombinantly. Here, we characterized 100 structure-guided spike designs and identified 26 individual substitutions that increased protein yields and stability. Testing combinations of beneficial substitutions resulted in the identification of HexaPro, a variant with six beneficial proline substitutions exhibiting ~10-fold higher expression than its parental construct and the ability to withstand heat stress, storage at room temperature, and three freeze-thaw cycles. A 3.2 Å-resolution cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-yield production of a stabilized prefusion spike protein will accelerate the development of vaccines and serological diagnostics for SARS-CoV-2.
1The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has led to accelerated 2 efforts to develop therapeutics, diagnostics, and vaccines to mitigate this public health 3 emergency. A key target of these efforts is the spike (S) protein, a large trimeric class I fusion 4 protein that is metastable and difficult to produce recombinantly in large quantities. Here, we 5 designed and expressed over 100 structure-guided spike variants based upon a previously 6 determined cryo-EM structure of the prefusion SARS-CoV-2 spike. Biochemical, biophysical 7 and structural characterization of these variants identified numerous individual substitutions that 8 increased protein yields and stability. The best variant, HexaPro, has six beneficial proline 9 substitutions leading to ~10-fold higher expression than its parental construct and is able to 10 withstand heat stress, storage at room temperature, and multiple freeze-thaws. A 3.2 Å-resolution 11 cryo-EM structure of HexaPro confirmed that it retains the prefusion spike conformation. High-12 yield production of a stabilized prefusion spike protein will accelerate the development of 13 vaccines and serological diagnostics for SARS-CoV-2. 14 3 INTRODUCTION 15 Coronaviruses are enveloped viruses containing positive-sense RNA genomes. Four human 16 coronaviruses generally cause mild respiratory illness and circulate annually. However, SARS-17 CoV and MERS-CoV were acquired by humans via zoonotic transmission and caused outbreaks 18 of severe respiratory infections with high case-fatality rates in 2002 and 2012, respectively 1,2 . 19 SARS-CoV-2 is a novel betacoronavirus that emerged in Wuhan, China in December 2019 and 20 is the causative agent of the ongoing COVID-19 pandemic 3,4 . As of May 26, 2020, the WHO has 21 reported over 5 million cases and 350,000 deaths worldwide. Effective vaccines, therapeutic 22 antibodies and small-molecule inhibitors are urgently needed, and the development of these 23 interventions is proceeding rapidly. 24 Coronavirus virions are decorated with a spike (S) glycoprotein that binds to host-cell 25 receptors and mediates cell entry via fusion of the host and viral membranes 5 . S proteins are 26 trimeric class I fusion proteins that are expressed as a single polypeptide that is subsequently 27cleaved into S1 and S2 subunits by cellular proteases 6,7 . The S1 subunit contains the receptor-28 binding domain (RBD), which, in the case of SARS-CoV-2, recognizes the angiotensin-29 converting enzyme 2 (ACE2) receptor on the host-cell surface [8][9][10] . The S2 subunit mediates 30 membrane fusion and contains an additional protease cleavage site, referred to as S2′, that is 31 adjacent to a hydrophobic fusion peptide. Binding of the RBD to ACE2 triggers S1 dissociation, 32 allowing for a large rearrangement of S2 as it transitions from a metastable prefusion 33 conformation to a highly stable postfusion conformation 6,11 . During this rearrangement, the 34 fusion peptide is inserted into the host-cell membrane after cleavage at S2′, and two h...
Hapalindoles are bioactive indole alkaloids with fascinating polycyclic ring systems whose biosynthetic assembly mechanism has remained unknown since their initial discovery in the 1980s. In this study, we describe the fam gene cluster from the cyanobacterium Fischerella ambigua UTEX 1903 encoding hapalindole and ambiguine biosynthesis along with the characterization of two aromatic prenyltransferases, FamD1 and FamD2, and a previously undescribed cyclase, FamC1. These studies demonstrate that FamD2 and FamC1 act in concert to form the tetracyclic core ring system of the hapalindoles from cis-indole isonitrile and geranyl pyrophosphate through a presumed biosynthetic Cope rearrangement and subsequent 6-exo-trig cyclization/electrophilic aromatic substitution reaction.
Synthetic DNA is rapidly emerging as a durable, high-density information storage platform. A major challenge for DNA-based information encoding strategies is the high rate of errors that arise during DNA synthesis and sequencing. Here, we describe the HEDGES (Hash Encoded, Decoded by Greedy Exhaustive Search) error-correcting code that repairs all three basic types of DNA errors: insertions, deletions, and substitutions. HEDGES also converts unresolved or compound errors into substitutions, restoring synchronization for correction via a standard Reed–Solomon outer code that is interleaved across strands. Moreover, HEDGES can incorporate a broad class of user-defined sequence constraints, such as avoiding excess repeats, or too high or too low windowed guanine–cytosine (GC) content. We test our code both via in silico simulations and with synthesized DNA. From its measured performance, we develop a statistical model applicable to much larger datasets. Predicted performance indicates the possibility of error-free recovery of petabyte- and exabyte-scale data from DNA degraded with as much as 10% errors. As the cost of DNA synthesis and sequencing continues to drop, we anticipate that HEDGES will find applications in large-scale error-free information encoding.
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is a bioactive phospholipid that regulates diverse biological processes, including cell proliferation, migration, and survival/apoptosis, through the activation of a family of G protein-coupled receptors. The ATX-LPA pathway has been implicated in many pathologic conditions, including cancer, fibrosis, inflammation, cholestatic pruritus, and pain. Therefore, ATX inhibitors represent an attractive strategy for the development of therapeutics to treat a variety of diseases. Mouse and rat ATX have been crystallized previously with LPA or small-molecule inhibitors bound. Here, we present the crystal structures of human ATX in complex with four previously unpublished, structurally distinct ATX inhibitors. We demonstrate that the mechanism of inhibition of each compound reflects its unique interactions with human ATX. Our studies may provide a basis for the rational design of novel ATX inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.