In order to identify the concerns and possible barriers for women considering careers in academic medicine, in 1990 the authors surveyed both men and women medical students, housestaff, postdoctoral students, and junior faculty at The University of California, San Francisco (UCSF). The authors achieved a 58% response rate from students and faculty, a 21% response rate from postdoctoral students, and a 15% response rate from housestaff. Results indicated that women at all levels were less interested in academic careers than were their male colleagues. Concerns about balancing family responsibilities, clinical practice, and teaching in addition to the research required of an academic career were mentioned most frequently. Women, especially those among the housestaff and junior faculty, reported fewer mentor relationships and role models. The authors discuss these findings in relation to other studies and describe what they are doing to foster women's interest and success in academic medicine at UCSF.
The NA LiSN-S is a potentially valuable tool for assessing auditory stream segregation skills in children. The availability of one-sided critical difference scores makes the NA LiSN-S useful for monitoring listening performance over time and determining the effects of maturation, compensation (such as an assistive listening device), or remediation.
A sensitive optical detector is presented based on a deeply depleted graphene-insulator-semiconducting (D2GIS) junction, which offers the possibility of simultaneously leveraging the advantages of both charge integration and localized amplification. Direct read-out and built-in amplification are accomplished via photogating of a graphene field-effect transistor (GFET) by carriers generated within a deeply depleted low-doped silicon substrate. Analogous to a depleted metal-oxide-semiconducting junction, photo-generated charge collects in the potential well that forms at the semiconductor/insulator interface and induces charges of opposite polarity within the graphene film modifying its conductivity. This device enables simultaneous photo-induced charge integration with continuous “on detector” readout through use of graphene. The resulting devices exhibit responsivities as high as 2,500 A/W (25,000 S/W) for visible wavelengths and a dynamic range of 30 dB. As both the graphene and device principles are transferrable to arbitrary semiconductor absorbers, D2GIS devices offer a high-performance paradigm for imaging across the electromagnetic spectrum.
The electrochemical storage of hydrogen on a range of carbon nanotubes has been investigated using electrochemical techniques and in situ Raman spectroelectrochemistry. An aggregated, single-walled nanotube sample was found to have the highest apparent storage capacity of 0.22 wt % (3 M KOH). Raman spectroelectrochemistry confirmed that no irreversible structural changes occur upon charging. The storage was found to be primarily due to the sorption of H2 gas in the pores of the nanotube aggregate, combined with some chemisorption on the amorphous carbon impurities in the sample. It is, therefore, concluded that the observed storage capacity is due to the small pores and the presence of carbonaceous impurities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.