Fecal microbiota transplantation (FMT) is a successful therapeutic strategy for treating recurrent Clostridioides difficile infection. Despite remarkable efficacy, implementation of FMT therapy is limited and the mechanism of action remains poorly understood. Here, we demonstrate a critical role for the immune system in supporting FMT using a murine C. difficile infection system. Following FMT, Rag1 heterozygote mice resolve C. difficile while littermate Rag1−/− mice fail to clear the infection. Targeted ablation of adaptive immune cell subsets reveal a necessary role for CD4+ Foxp3+ T-regulatory cells, but not B cells or CD8+ T cells, in FMT-mediated resolution of C. difficile infection. FMT non-responsive mice exhibit exacerbated inflammation, impaired engraftment of the FMT bacterial community and failed restoration of commensal bacteria-derived secondary bile acid metabolites in the large intestine. These data demonstrate that the host’s inflammatory immune status can limit the efficacy of microbiota-based therapeutics to treat C. difficile infection.
Mammals produce large quantities of mucosal and systemic antibodies that maintain the intestinal barrier, shape the intestinal microbiome and promote lifelong mutualism with commensal microbes. Here, we developed an integrated host-commensal approach combining microbial flow cytometry and 16s rRNA gene sequencing to define the core microbes that induce mucosal and systemic antibodies in pediatric selective Immunoglobulin A (IgA) deficient and household control siblings with CyTOF analysis to determine the impacts of IgA deficiency on host cellular immune phenotype. In healthy controls, mucosal secretory IgA and IgM antibodies coat an overlapping subset of microbes, predominantly Firmicutes and Proteobacteria. Serum IgG antibodies target a similar consortium of fecal microbes, revealing connections between mucosal and systemic antibody networks. Unexpectedly, IgM provides limited compensation for IgA in children lacking intestinal IgA. Furthermore, we find broad systemic immune dysregulation in a subset of children and mice lacking IgA, including enhanced IgG targeting of fecal microbiota, elevated levels of inflammatory and allergic cytokines and alterations in T cell activation state. Thus, IgA tunes systemic interactions between the host and commensal microbiota. Understanding how IgA tunes baseline immune tone has implications for predicting and preventing autoimmune, inflammatory and allergic diseases broadly, as well as providing improved prognostic guidance to patients with IgA deficiency.
The ability of most patients with selective immunoglobulin A (IgA) deficiency (SIgAD) to remain apparently healthy has been a persistent clinical conundrum. Compensatory mechanisms, including IgM, have been proposed, yet it remains unclear how secretory IgA and IgM work together in the mucosal system and, on a larger scale, whether the systemic and mucosal anti-commensal responses are redundant or have unique features. To address this gap in knowledge, we developed an integrated host-commensal approach combining microbial flow cytometry and metagenomic sequencing (mFLOW-Seq) to comprehensively define which microbes induce mucosal and systemic antibodies. We coupled this approach with high-dimensional immune profiling to study a cohort of pediatric patients with SIgAD and household control siblings. We found that mucosal and systemic antibody networks cooperate to maintain homeostasis by targeting a common subset of commensal microbes. In IgA-deficiency, we find increased translocation of specific bacterial taxa associated with elevated levels of systemic IgG targeting fecal microbiota. Associated features of immune system dysregulation in IgA-deficient mice and humans included elevated levels of inflammatory cytokines, enhanced follicular CD4 T helper cell frequency and activation, and an altered CD8 T cell activation state. Although SIgAD is clinically defined by the absence of serum IgA, the symptomatology and immune dysregulation were concentrated in the SIgAD participants who were also fecal IgA deficient. These findings reveal that mucosal IgA deficiency leads to aberrant systemic exposures and immune responses to commensal microbes, which increase the likelihood of humoral and cellular immune dysregulation and symptomatic disease in patients with IgA deficiency.
The complex network of microscopic organisms living on and within humans, collectively referred to as the microbiome, produce wide array of biologically active molecules that shape our health. Disruption of the microbiome is associated with susceptibility to a range of diseases such as cancer, diabetes, allergy, obesity, and infection. A new series of next-generation microbiome-based therapies are being developed to treat these diseases by transplanting bacteria or bacterial-derived byproducts into a diseased individual to reset the recipient’s microbiome and restore health. Microbiome transplantation therapy is still in its early stages of being a routine treatment option and, with a few notable exceptions, has had limited success in clinical trials. In this review, we highlight the successes and challenges of implementing these therapies to treat disease with a focus on interactions between the immune system and microbiome-based therapeutics. The immune activation status of the microbiome transplant recipient prior to transplantation has an important role in supporting bacterial engraftment. Following engraftment, microbiome transplant derived signals can modulate immune function to ameliorate disease. As novel microbiome-based therapeutics are developed, consideration of how the transplants will interact with the immune system will be a key factor in determining whether the microbiome-based transplant elicits its intended therapeutic effect.
Tumors may include a high proportion of immune modulatory cells and molecules that restrain the anti-cancer response. Activation of T cells to eliminate cancer cells within the immune-suppressive tumor microenvironment remains a challenge. We have shown that C57BL/6J peritoneal cell culture models features of macrophage-dense tumors as TCR ligation fails to activate T cells unless IFNγ is neutralized or iNOS is inhibited. We tested other forms of T cell activation and found phytohemagglutinin (PHA) distinctive in the ability to markedly expand CD8 T cells in this model. IFNγ or iNOS inhibition was not necessary for this response. PHA triggered less IFNγ production and inhibitory PD-L1 expression than TCR ligation. Macrophages and CD44hi T cells bound PHA. Spleen T cell responses to PHA were markedly enhanced by the addition of peritoneal cells revealing that macrophages enhance T cell expansion. That PHA increases CD8 T cell responses within macrophage-dense culture suggests this mitogen might enhance anti-tumor immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.