A new inflation test device was developed to study the mechanical properties of aortic tissue. The device was used to measure failure (rupture) strength and to determine the nonlinear, anisotropic elastic properties of porcine thoracic aorta. The tester was designed to stretch initially flat, circular tissue specimens to rupture under uniform biaxial loading. Water was chosen as the pressurizing fluid. Mechanical stretch and radius of curvature during inflation were measured optically in two orthogonal directions, and the Cauchy stress components were calculated from the deformation and the applied pressure. All porcine samples that ruptured successfully did so via a tear in the circumferential direction. Thus, the failure strength was taken to be the stress in the axial direction immediately prior to rupture. The mean failure strength was 1.75 MPa and mean axial stretch at failure was 1.52. These values agree well with published data for other arterial tissues. The nonlinearly elastic deformation behavior was modeled using a hyperelastic constitutive law of the type proposed by Holzapfel et al. [Holzapfel GA, Gasser TC, Ogden RW. J Elasticity 2000;61:1-48]. The results showed that the dominant directions of anisotropy in the porcine aortas were approximately 45 degrees to the axial and circumferential directions, and that the isotropic contribution to the constitutive model was insignificant.
Abdominal Aortic Aneurysms (AAAs) are localized enlargements of the aorta. If untreated, AAAs will grow irreversibly until rupture occurs. Ruptured AAAs are usually fatal and are a leading cause of death in the United States, killing 15,000 per year (National Center for Health Statistics, 2001). Surgery to repair AAAs also carries mortality risks, so surgeons desire a reliable tool to evaluate the risk of rupture versus the risk of surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.