The SECCHI HI2 white-light imagers on the STEREO A and B spacecraft show systematically different proper motions of material moving outward from the Sun in front of high-speed solar wind streams from coronal holes. As a group of ejections enters the eastern (A) field of view, the elements at the rear of the group appear to overrun the elements at the front. (This is a projection effect and does not mean that the different elements actually merge.) The opposite is true in the western (B) field; the elements at the front of the group appear to run away from the elements at the rear. Elongation/time maps show this effect as a characteristic grouping of the tracks of motion into convergent patterns in the east and divergent patterns in the west, consistent with ejections from a single longitude on the rotating Sun. Evidently, we are observing segments of the "garden-hose" spiral made visible when fast wind from a low-latitude coronal hole compresses blobs of streamer material being shed at the leading edge of the hole.
We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging systems designed to detect CMEs in the heliosphere, in particular, for the first time, observing the propagation of such events along the SunEarth line, that is, those directed towards Earth. At the time of writing the STEREO spacecraft are still close to the Earth and the full advantage of the HI dual-imaging has yet to be realised. However, even these early results show that despite severe technical challenges in their design and implementation, the HI instruments can successfully detect CMEs in the heliosphere, and this is an extremely important milestone for CME research. For the principal event being analysed here we demonstrate an ability to track a CME from the corona to over 40 degrees. The time -altitude history shows a constant speed of ascent over at least the first 50 solar radii and some evidence for deceleration at distances of over 20 degrees. Comparisons of associated coronagraph data and the HI images show that the basic structure of the CME remains clearly intact as it propagates from the corona into the heliosphere. Extracting the CME signal requires a consideration of the F-coronal intensity distribution, which can be identified from the HI data. Thus we present the preliminary results on this measured F-coronal intensity and compare these to the modelled F-corona of Koutchmy and Lamy (IAU Colloq. 85, 63, 1985). This analysis demonstrates that CME material some two orders of magnitude weaker than the F-corona can be detected; a specific example at 40 solar radii revealed CME intensities as low as 1.7×10 −14 of the solar brightness. These observations herald a new era in CME research as we extend our capability for tracking, in particular, Earth-directed CMEs into the heliosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.