To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington’s disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We find repeat length dependent transcriptional signatures are prominent in the striatum, less so in cortex, and minimal in the liver. Co-expression network analyses reveal 13 striatal and 5 cortical modules that are highly correlated with CAG length and age, and that are preserved in HD models and some in the patients. Top striatal modules implicate mHtt CAG length and age in graded impairment of striatal medium spiny neuron identity gene expression and in dysregulation of cAMP signaling, cell death, and protocadherin genes. Importantly, we used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at both RNA and protein levels, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo.
The corticotropin releasing factor (CRF) family of ligands and their receptors coordinate endocrine, behavioral, autonomic, and metabolic responses to stress and play additional roles within the cardiovascular, gastrointestinal, and other systems. The actions of CRF and the related urocortins are mediated by activation of two receptors, CRF-R1 and CRF-R2, belonging to the B1 family of G protein-coupled receptors. The short-consensus-repeat fold (SCR) within the first extracellular domain (ECD1) of the CRF receptor(s) comprises the major ligand binding site and serves to dock a peptide ligand via its C-terminal segment, thus positioning the N-terminal segment to interact with the receptor's juxtamembrane domains to activate the receptor. Here we present the 3D NMR structure of ECD1 of CRF-R2 in complex with astressin, a peptide antagonist. In the structure of the complex the C-terminal segment of astressin forms an amphipathic helix, whose entire hydrophobic face interacts with the short-consensus-repeat motif, covering a large intermolecular interface. In addition, the complex is characterized by intermolecular hydrogen bonds and a salt bridge. These interactions are quantitatively weighted by an analysis of the effects on the full-length receptor affinities using an Ala scan of CRF. These structural studies identify the major determinants for CRF ligand specificity and selectivity and support a two-step model for receptor activation. Furthermore, because of a proposed conservation of the fold for both the ECD1s and ligands, this structure can serve as a model for ligand recognition for the entire B1 receptor family.3D structure ͉ astressin ͉ corticotropin releasing factor ͉ NMR T he ability of the body to adapt to stressful stimuli and the role of stress maladaptation in human diseases has been intensively investigated. Corticotropin releasing factor (CRF) (1), a 41-residue peptide, and its three paralogous peptides, urocortin (Ucn) 1, 2, and 3, play important and diverse roles in coordinating endocrine, autonomic, metabolic, and behavioral responses to stress (2, 3). CRF family peptides and their receptors are also implicated in the modulation of additional central nervous system functions including appetite, addiction, hearing, and neurogenesis and act peripherally within the endocrine, cardiovascular, reproductive, gastrointestinal, and immune systems (4, 5). CRF and related ligands initially act by binding to their G protein-coupled receptors (GPCRs). These belong to the peptide hormone B1 family (family B1 GPCRs), comprising receptors for growth hormone releasing factor, secretin, calcitonin, vasoactive intestinal peptide, glucagon, glucagon-like peptide-1, and parathyroid hormone. Two CRF receptors, CRF-R1 and CRF-R2, have been cloned in mammals (6, 7).Structure activity studies of CRF showed that the first eight N-terminal residues of the hormone are necessary for GPCR signaling (1, 8), whereas the C-terminal (Ϸ15) residues are important for binding (9,10). A two-domain behavior for ligand binding was a...
Huntington’s disease (HD) is a fatal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion leading to an elongated polyglutamine stretch in Huntingtin1. Mutant Huntingtin (mHTT) is ubiquitously expressed but elicits selective cortical and striatal neurodegeneration in HD2. The mechanistic basis for such selective neuronal vulnerability remains unclear. A necessary step towards resolving this enigma is to define the cell types in which mHTT expression is causally linked to the disease pathogenesis. Using a conditional human genomic transgenic mouse model of HD expressing full-length mHTT (BACHD)3, we genetically reduced mHTT expression in striatal, cortical, or both neuronal populations. We show that cortical mHTT reduction in BACHD partially improves motor and psychiatric-like behavioral deficits, but does not improve neurodegeneration, while mHTT reduction in both neuronal populations consistently ameliorates all behavioral deficits and selective brain atrophy in this HD model. Furthermore, mHTT reduction in cortical or striatal neurons partially ameliorates cortico-striatal synaptic deficits, while further restoration of striatal synaptic function is achieved by mHTT reduction in both neuronal cell types. Our study demonstrates distinct, but interacting roles of cortical and striatal mHTT in disease pathogenesis and suggests that optimal HD therapeutics may require targeting mHTT in both cortical and striatal neurons.
The endoribonuclease, Dicer, is indispensible for generating the majority of mature microRNAs (miRNAs), which are posttranscriptional regulators of gene expression involved in a wide range of developmental and pathological processes in mammalian central nervous system. While functions of Dicer-dependent miRNA pathways in neurons and oligodendrocytes have been extensively investigated, little is known about the role of Dicer in astrocytes. Here we report the effect of Cre-loxP mediated conditional deletion of Dicer selectively from postnatal astroglia on brain development. Dicer-deficient mice exhibited normal motor development and neurological morphology prior to postnatal week 5. Thereafter mutant mice invariably developed a rapidly fulminant neurological decline characterized by ataxia, severe progressive cerebellar degeneration, seizures, uncontrollable movements and premature death by postnatal week 9–10. Integrated transcription profiling, histological and functional analyses of cerebella showed that deletion of Dicer in cerebellar astrocytes altered the transcriptome of astrocytes to be more similar to an immature or reactive-like state prior to the onset of neurological symptoms or morphological changes. As a result, critical and mature astrocytic functions including glutamate uptake and antioxidant pathways were substantially impaired, leading to massive apoptosis of cerebellar granule cells and degeneration of Purkinje cells. Collectively, our study demonstrates the critical involvement of Dicer in normal astrocyte maturation and maintenance. Our findings also reveal non-cell autonomous roles of astrocytic Dicer-dependent pathways in regulating proper neuronal functions and implicate that loss of or dysregulation of astrocytic Dicer-dependent pathways may be involved in neurodegeneration and other neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.