A flow‐through experiment was performed to investigate evolution of a fractured carbonate caprock during flow of CO2‐acidified brine. A core was taken from the Amherstburg limestone, a caprock formation overlying the Bois Blanc and Bass Islands formations, which have been used to demonstrate CO2 storage in the Michigan basin. The inlet brine was representative of deep saline brines saturated with CO2, resulting in a starting pH of 4.4. Experimental conditions were 27 °C and 10 MPa. X‐ray computed tomography and scanning electron microscopy were used to observe evolution of fracture geometry and to investigate mineralogical changes along the fracture surface. The initial brine flow corresponded to an average fluid velocity of 110 cm hr−1. After one week, substantial mineral dissolution caused the average cross‐sectional area of the fracture to increase from 0.09 cm2 to 0.24 cm2. This demonstrates that carbonate caprocks, if fractured, can erode quickly and may jeopardize sealing integrity when hydrodynamic conditions promote flow of CO2‐acidified brine. However, changes to fracture permeability due to mineral dissolution may be offset by unaltered constrictions along the flow path and by increases in surface roughness. In this experiment, preferential dissolution of calcite over dolomite led to uneven erosion of the fracture surface and an increase in roughness. In areas with clay minerals, calcite dissolution left behind a silicate mineral‐rich microporous coating along the fracture wall. Thus, the evolution of fracture permeability will depend in a complex way on the carbonate content, as well as the heterogeneity of the minerals and their spatial patterning. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd
Second harmonic generation (SHG) spectroscopy was used to characterize the pH-dependent electrostatic charging behavior of (0001) and (102) crystallographic surfaces of corundum (alpha-Al2O3) single-crystal substrates. The pH value of the point of zero charge (pH(pzc)) for each surface was determined by monitoring the SH response during three consecutive pH titrations conducted with 1, 10, and 100 mM NaNO3 carbonate-free aqueous solutions. The crossing point of the three titration curves, which corresponds to the pH(pzc), occurs at pH 4.1 +/- 0.4 for the (0001) surface and pH 5.2 +/- 0.4 for the (102) surface. SHG measurements that were recorded as a function of NaNO3 concentration at fixed pH values were found to corroborate the pH(pzc) values identified in the pH titrations. A comparison of the SHG results with surface protonation constants calculated using a simple electrostatic model suggests that surface relaxation and bonding changes resulting from surface hydration do not account for differences between experimental observations and model predictions. The measured pH(pzc) values for the alpha-Al2O3 single-crystal surfaces are significantly more acidic than published values for Al-(hydr)oxide particles which typically range from pH 8 to 10. This discrepancy suggests that the charging behavior of Al-(hydr)oxide particles is determined by surface sites associated with defects assuming that differences in surface acidity reflect differences in the coordination environment and local structure of the potential-determining surface groups.
Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO 2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO 2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.
There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction‐stability‐permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate‐rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate‐rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction‐stability‐permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.
Acidic reactive flow in fractures is relevant in subsurface activities, such as CO 2 geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows, such as leakage, injectability, and fluid production. In this study, X-ray computed tomography scans of a fractured carbonate caprock were used to create three-dimensional (3D) reconstructions of the fracture before and after reaction with CO 2 -acidified brine (Ellis, B.; Peters, C.; Fitts, J.; Bromhal, G.; McIntyre, D.; Warzinski, R.; Rosenbaum, E. Deterioration of a fractured carbonate caprock exposed to CO 2 -acidified brine flow. Greenhouse Gases: Sci. Technol. 2011, 1, 248−260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways, including "comb-tooth" structures created from preferential dissolution of calcite in transverse sedimentary bands and the creation of degraded zones, i.e., porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z 2 parameters and fractal dimensions D f . Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity, and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures and the changes in hydraulic apertures are nonlinear. Overestimation of the flow rate by a factor of 2 or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the one-dimensional (1D) statistical model and two-dimensional (2D) local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume but cover 70−80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are 2−4 times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.