Rapid biological movements, such as the extraordinary strikes of mantis shrimp and accelerations of jumping insects, have captivated generations of scientists and engineers. These organisms store energy in elastic structures (e.g. springs) and then rapidly release it using latches, such that movement is driven by the rapid conversion of stored elastic to kinetic energy using springs, with the dynamics of this conversion mediated by latches. Initially drawn to these systems by an interest in the muscle power limits of small jumping insects, biologists established the idea of power amplification, which refers both to a measurement technique and to a conceptual framework defined by the mechanical power output of a system exceeding muscle limits. However, the field of fast elastically driven movements has expanded to encompass diverse biological and synthetic systems that do not have musclessuch as the surface tension catapults of fungal spores and launches of plant seeds. Furthermore, while latches have been recognized as an essential part of many elastic systems, their role in mediating the storage and release of elastic energy from the spring is only now being elucidated. Here, we critically examine the metrics and concepts of power amplification and encourage a framework centered on latch-mediated spring actuation (LaMSA). We emphasize approaches and metrics of LaMSA systems that will forge a pathway toward a principled, interdisciplinary field.
As animals get smaller, their ability to generate usable work from muscle contraction is decreased by the muscle’s force–velocity properties, thereby reducing their effective jump height. Very small animals use a spring-actuated system, which prevents velocity effects from reducing available energy. Since force–velocity properties reduce the usable work in even larger animals, why don’t larger animals use spring-actuated jumping systems as well? We will show that muscle length–tension properties limit spring-actuated systems to generating a maximum one-third of the possible work that a muscle could produce—greatly restricting the jumping height of spring-actuated jumpers. Thus a spring-actuated jumping animal has a jumping height that is one-third of the maximum possible jump height achievable were 100% of the possible muscle work available. Larger animals, which could theoretically use all of the available muscle energy, have a maximum jumping height that asymptotically approaches a value that is about three times higher than that of spring-actuated jumpers. Furthermore, a size related “crossover point” is evident for these two jumping mechanisms: animals smaller than this point can jump higher with a spring-actuated mechanism, while animals larger than this point can jump higher with a muscle-actuated mechanism. We demonstrate how this limit on energy storage is a consequence of the interaction between length–tension properties of muscles and spring stiffness. We indicate where this crossover point occurs based on modeling and then use jumping data from the literature to validate that larger jumping animals generate greater jump heights with muscle-actuated systems than spring-actuated systems.
SUMMARYBipedal running is common among lizard species, but although the kinematics and performance of this gait have been well characterized, the advantages in biologically relevant situations are still unclear. Obstacle negotiation is a task that is ecologically relevant to many animals while moving at high speeds, such as during bipedal running, yet little is known about how obstacles impact locomotion and performance. We examined the effects of obstacle negotiation on the kinematics and performance of lizards during bipedal locomotion. We quantified three-dimensional kinematics from high-speed video (500Hz) of six-lined racerunners (Aspidoscelis sexlineata) running on a 3m racetrack both with and without an obstacle spanning the width of the track. The lizards did not alter their kinematics prior to contacting the obstacle. Although contact with the obstacle caused changes to the hindlimb kinematics, mean forward speed did not differ between treatments. The deviation of the vertical position of the body center of mass did not differ between treatments, suggesting that in the absence of a cost to overall performance, lizards forgo maintaining normal kinematics while negotiating obstacles in favor of a steady body center of mass height to avoid destabilizing locomotion.
Systems powered by elastic recoil need a latch to prevent motion while a spring is loaded but allow motion during spring recoil. Some jumping animals that rely on elastic recoil use the increasing mechanical advantage of limb extensor muscles to accomplish latching. We examined the ways in which limb morphology affects latching and the resulting performance of an elastic-recoil mechanism. Additionally, because increasing mechanical advantage is a consequence of limb extension that may be found in many systems, we examined the mechanical consequences for muscle in the absence of elastic elements. By simulating muscle contractions against a simplified model of an extending limb, we found that increasing mechanical advantage can limit the work done by muscle by accelerating muscle shortening during limb extension. The inclusion of a series elastic element dramatically improves mechanical output by allowing for additional muscle work that is stored and released from the spring. This suggests that elastic recoil may be beneficial for more animals than expected when assuming peak isotonic power output from muscle during jumping. The mechanical output of elastic recoil depends on limb morphology; long limbs moving small loads maximize total work, but it is done at a low power, whereas shorter limbs moving larger loads do less work at a higher power. This work-power trade-off of limb morphology is true with or without an elastic element. Systems with relatively short limbs may have performance that is robust to variable conditions such as body mass or muscle activation, while long-limbed systems risk complete failure with relatively minor perturbations. Finally, a changing mechanical advantage latch allows for muscle work to be done simultaneously with spring recoil, changing the predictions for spring mechanical properties. Overall, the design constraints revealed by considering the mechanics of this particular latch will inform our understanding of the evolution of elastic-recoil mechanisms and our attempts to engineer similar systems.
The evolution of ballistic tongue projection in plethodontid salamanders—a high-performance and thermally robust musculoskeletal system—is ideal for examining how the components required for extreme performance in animal movement are assembled in evolution. Our comparative data on whole-organism performance measured across a range of temperatures and the musculoskeletal morphology of the tongue apparatus were examined in a phylogenetic framework and combined with data on muscle contractile physiology and neural control. Our analysis reveals that relatively minor evolutionary changes in morphology and neural control have transformed a muscle-powered system with modest performance and high thermal sensitivity into a spring-powered system with extreme performance and functional robustness in the face of evolutionarily conserved muscle contractile physiology. Furthermore, these changes have occurred in parallel in both major clades of this largest family of salamanders. We also find that high-performance tongue projection that exceeds available muscle power and thermal robustness of performance coevolve, both being emergent properties of the same elastic-recoil mechanism. Among the taxa examined, we find muscle-powered and fully fledged elastic systems with enormous performance differences, but no intermediate forms, suggesting that incipient elastic mechanisms do not persist in evolutionary time. A growing body of data from other elastic systems suggests that similar coevolution of traits may be found in other ectothermic animals with high performance, particularly those for which thermoregulation is challenging or ecologically costly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.