Background:The diagnosis and management of acute ischemic stroke are limited by the lack of rapid diagnostic assays for use in an emergency setting. Computed tomography (CT) scanning is used to diagnose hemorrhagic stroke but is relatively ineffective (<33% sensitive) in detecting ischemic stroke. The ability to correlate blood-borne protein biomarkers with stroke phenotypes would aid in the development of such rapid tests. Methods: ELISAs for >50 protein biomarkers were developed for use on a high-throughput robotic workstation. These assays were used to screen plasma samples from 214 healthy donors and 223 patients diagnosed with stroke, including 82 patients diagnosed with acute ischemic stroke. Marker assay values were first compared by univariate analysis, and then the top markers were subjected to multivariate analysis to derive a marker panel algorithm for the prediction of stroke. Results: The top markers from this analysis were S-100b (a marker of astrocytic activation), B-type neurotrophic growth factor, von Willebrand factor, matrix metalloproteinase-9, and monocyte chemotactic protein-1. In a panel algorithm in which three or more marker values above their respective cutoffs were scored as positive, these five markers provided a sensitivity of 92% at 93% specificity for ischemic stroke samples taken within 6 h from symptom onset. Conclusion: A marker panel approach to the diagnosis of stroke may provide a useful adjunct to CT scanning in the emergency setting.
Furin is a ubiquitous prototypical mammalian kexin/subtilisin-like endoproteinase that is involved in the proteolytic processing of a variety of proteins in the exocytic and endocytic pathways, with cleavage occurring at the C terminus of the minimal consensus furin recognition sequence Arg-Xaa-Xaa-Arg. In this study, human proteinase inhibitor 8 (PI8), a widely expressed 45-kDa ovalbumin-type serpin that contains two sequences homologous to the minimal sequence for recognition by furin in its reactive site loop, was tested for its ability to inhibit a recombinant soluble form of human furin. PI8 formed an SDS-stable complex with furin and inhibited its amidolytic activity via a two-step mechanism with a kappa assoc of 6.5 x 10(5) M-1 S-1 and an overall Ki of 53.8 pM. Thus, PI8 inhibits furin in a rapid, tight binding manner that is characteristic of physiological serpin-proteinase interactions. PI8 is not only the first human ovalbumin-type serpin to demonstrate inhibitory activity toward furin, but it is also the first significant inhibitor of furin identified that is not a serpin reactive site loop mutant, either naturally occurring or engineered.
The regulation of caspases, cysteine proteinases that cleave their substrates after aspartic residues, is poorly understood, even though they are involved in tightly regulated cellular processes. The recently discovered serpin analogue proteinase inhibitor 9 (PI9) is unique among human serpin analogues in that it has an acidic residue in the putative specificity-determining position of the reactive-site loop. We measured the ability of PI9 to inhibit the amidolytic activity of several caspases. The hydrolysis of peptide substrates by caspase-1 (interleukin-1beta-converting enzyme), caspase-4 and caspase-8 is inhibited by PI9 in a time-dependent manner. The rate of reaction of caspase-1 with PI9, as well as the rate of substrate hydrolysis of the initial caspase-PI9 complex, shows a hyperbolic dependence on the concentration of PI9, indicative of a two-step kinetic mechanism for inhibition with an apparent second-order rate constant of 7x10(2) M(-1).s(-1). The hydrolysis of a tetrapeptide substrate by caspase-3 is not inhibited by PI9. The complexes of caspase-1 and caspase-4 with PI9 can be immunoprecipitated but no complex with caspase-3 can be detected. No complex can be immunoprecipitated if the active site of the caspase is blocked with a covalent inhibitor. These results show that PI9 is an inhibitor of caspase-1 and to a smaller extent caspase-4 and caspase-8, but not of the more distantly related caspase-3. PI9 is the first example of a human serpin analogue that inhibits members of this class of cysteine proteinases.
Various antithrombotic agents are clinically used to inhibit the cascade of arterial or venous thrombosis in cardiovascular diseases. Dual antiplatelet therapy with aspirin and P2Y12 inhibitors is prescribed in patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI). Direct oral anticoagulants (DOACs) are widely used for the prevention or treatment of thromboembolism in patients with atrial fibrillation (AF) and venous thromboembolism. However, there has been no definitive tool to simultaneously monitor the antithrombotic effects of these drugs. The Total Thrombus-Formation Analysis System (T-TAS), a microchip-based flow chamber system that mimics in vivo conditions for evaluating whole blood thrombogenicity, was developed for the quantitative analysis of thrombus formation in whole blood specimens. The utility of T-TAS has been evaluated in CAD patients treated with antiplatelet therapies. The T-TAS PL chip area under the flow pressure curve (AUC) accurately assesses primary hemostasis and is sensitive to the therapeutic effects of various antiplatelet therapies. In addition, low AUC results are a significant predictor of periprocedural bleeding events in CAD patients undergoing PCI. The T-TAS AR chip AUC result is useful for assessing the efficacy of DOACs and warfarin in AF patients undergoing catheter ablation, and it is also a potential independent predictor of periprocedural bleeding events and avoidance of thrombosis in patients having undergone total knee arthroplasty. In conclusion, T-TAS is a useful index for evaluating the total antithrombotic effects of combination antithrombotic agents in patients with various cardiovascular diseases.
The regulation of caspases, cysteine proteinases that cleave their substrates after aspartic residues, is poorly understood, even though they are involved in tightly regulated cellular processes. The recently discovered serpin analogue proteinase inhibitor 9 (PI9) is unique among human serpin analogues in that it has an acidic residue in the putative specificity-determining position of the reactive-site loop. We measured the ability of PI9 to inhibit the amidolytic activity of several caspases. The hydrolysis of peptide substrates by caspase-1 (interleukin-1beta-converting enzyme), caspase-4 and caspase-8 is inhibited by PI9 in a time-dependent manner. The rate of reaction of caspase-1 with PI9, as well as the rate of substrate hydrolysis of the initial caspase-PI9 complex, shows a hyperbolic dependence on the concentration of PI9, indicative of a two-step kinetic mechanism for inhibition with an apparent second-order rate constant of 7x10(2) M(-1).s(-1). The hydrolysis of a tetrapeptide substrate by caspase-3 is not inhibited by PI9. The complexes of caspase-1 and caspase-4 with PI9 can be immunoprecipitated but no complex with caspase-3 can be detected. No complex can be immunoprecipitated if the active site of the caspase is blocked with a covalent inhibitor. These results show that PI9 is an inhibitor of caspase-1 and to a smaller extent caspase-4 and caspase-8, but not of the more distantly related caspase-3. PI9 is the first example of a human serpin analogue that inhibits members of this class of cysteine proteinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.