Objective: Controversy exists regarding the optimal pumping method for left ventricular assist devices. The purpose of this investigation was to test the hypothesis that pulsatile left ventricular assist synchronized to the cardiac cycle provides superior left ventricular unloading and circulatory support compared with continuous-flow left ventricular assist devices at the same level of ventricular assist device flow. Methods: Seven male pigs were used to evaluate left ventricular assist device function using the TORVAD synchronized pulsatile-flow pump (Windmill Cardiovascular Systems, Inc, Austin, Tex) compared with the Bio-Medicus BPX-80 continuous-flow centrifugal pump (Medtronic, Inc, Minneapolis, Minn). Experiments were carried out under general anesthesia, and animals were instrumented via a median sternotomy. Hemodynamic measurements were obtained in the control state and with left ventricular assistance using the TORVAD and BPX-80 individually. Left ventricular failure was induced with suture ligation of the mid-left anterior descending coronary artery, and hemodynamic measurements were repeated. Results: During left ventricular assist device support, mean aortic pressure and total cardiac output were higher and left atrial pressure was lower with pulsatile compared with continuous flow at the same ventricular assist device flow rate. During ischemic left ventricular failure, pulsatile left ventricular support resulted in higher total cardiac output (5.58 AE 1.58 vs 5.12 AE 1.19, P < .05), higher mean aortic pressure (67.8 AE 14 vs 60.2 AE 10, P < .05), and lower left atrial pressure (11.5 AE 3.5 vs 13.9 AE 6.0, P < .05) compared with continuous flow at the same left ventricular assist device flow rate. Conclusion: Synchronized, pulsatile left ventricular assistance produces superior left ventricular unloading and circulatory support compared with continuous-flow left ventricular assist at the same flow rates.
A study of mechanical heart valve behavior in the pulmonary position as a function of pulmonary vascular resistance is reported for the St. Jude Medical bileaflet (SJMB) valve and the MedicalCV Omnicarbon (OTD) tilting disk valve. Tests were conducted in a pulmonic mock circulatory system and impedance was varied in terms of system pulmonary vascular resistance (PVR). An impedance spectrum was found using instantaneous pulmonary artery pressure and flow rate curves. Both valves fully opened and closed at and above a nominal PVR of 3.0 mmHg/L/min. The SJMB valve was prone to leaflet bounce at closure, but otherwise completely closed, at settings above and below this nominal setting. At PVR values at and below 2.0 mmHg/L/min, the SJMB valve exhibited two types of leaflet aberrant behavior: single leaflet only closure while the other leaflet fluttered, and incomplete closure where both leaflets flutter but neither remain fully closed. The OTD valve fully opened and closed to a PVR value of 1.6 mmHg/L/min. At lower values, the valve did not close. Valves designed for the left heart can show aberrant behavior under normal conditions as pulmonary valves.
This article provides an overview of the design challenges associated with scaling the low-shear pulsatile TORVAD ventricular assist device (VAD) for treating pediatric heart failure. A cardiovascular system model was used to determine that a 15 ml stroke volume device with a maximum flow rate of 4 L/min can provide full support to pediatric patients with body surface areas between 0.6 to 1.5 m2. Low shear stress in the blood is preserved as the device is scaled down and remains at least two orders of magnitude less than continuous flow VADs. A new magnetic linkage coupling the rotor and piston has been optimized using a finite element model (FEM) resulting in increased heat transfer to the blood while reducing the overall size of TORVAD. Motor FEM has also been used to reduce motor size and improve motor efficiency and heat transfer. FEM analysis predicts no more than 1°C temperature rise on any blood or tissue contacting surface of the device. The iterative computational approach established provides a methodology for developing a TORVAD platform technology with various device sizes for supporting the circulation of infants to adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.