Abstract. This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloonborne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45-60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about +20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within ±10% (average values within ±6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (∼35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to −10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements.
Sensor networks are revolutionizing environmental monitoring by producing massive quantities of data that are being made publically available in near real time. These data streams pose a challenge for ecologists because traditional approaches to quality assurance and quality control are no longer practical when confronted with the size of these data sets and the demands of real-time processing. Automated methods for rapidly identifying and (ideally) correcting problematic data are essential. However, advances in sensor hardware have outpaced those in software, creating a need for tools to implement automated quality assurance and quality control procedures, produce graphical and statistical summaries for review, and track the provenance of the data. Use of automated tools would enhance data integrity and reliability and would reduce delays in releasing data products. Development of community-wide standards for quality assurance and quality control would instill confidence in sensor data and would improve interoperability across environmental sensor networks.
Abstract. Phenology is the study of periodic biological occurrences and can provide important insights into the influence of climatic variability and change on ecosystems. Understanding Australia's vegetation phenology is a challenge due to its diverse range of ecosystems, from savannas and tropical rainforests to temperate eucalypt woodlands, semiarid scrublands, and alpine grasslands. These ecosystems exhibit marked differences in seasonal patterns of canopy development and plant life-cycle events, much of which deviates from the predictable seasonal phenological pulse of temperate deciduous and boreal biomes. Many Australian ecosystems are subject to irregular events (i.e. drought, flooding, cyclones, and fire) that can alter ecosystem composition, structure, and functioning just as much as seasonal change. We show how satellite remote sensing and ground-based digital repeat photography (i.e. phenocams) can be used to improve understanding of phenology in Australian ecosystems. First, we examine temporal variation in phenology on the continental scale using the enhanced vegetation index (EVI), calculated from MODerate resolution Imaging Spectroradiometer (MODIS) data. Spatial gradients are revealed, ranging from regions with pronounced seasonality in canopy development (i.e. tropical savannas) to regions where seasonal variation is minimal (i.e. tropical rainforests) or high but irregular (i.e. arid ecosystems). Next, we use time series colour information extracted from phenocam imagery to illustrate a range of phenological signals in four contrasting Australian ecosystems. These include greening and senescing events in tropical savannas and temperate eucalypt understorey, as well as strong seasonal dynamics of individual trees in a seemingly static evergreen rainforest. We also demonstrate how phenology links with ecosystem gross primary productivity (from eddy covariance) and discuss why these processes are linked in some ecosystems but not others. We conclude that phenocams have the potential to greatly improve the current understanding of Australian ecosystems. To facilitate the sharing of this information, we have formed the Australian Phenocam Network (http://phenocam.org.au/).
Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo ( Shuai et al., 2011 ) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seas...
The authors describe the optical design of a high-resolution Fourier Transform Spectrometer (FTS), which serves as the primary instrument at the University of Toronto Atmospheric Observatory (TAO). The FTS is dedicated to ground-based infrared solar absorption atmospheric measurements from Toronto, Ontario, Canada. Instrument performance is discussed in terms of instrumental line shape (ILS) and phase error and modulation efficiency as a function of optical path difference. Typical measurement parameters are presented together with retrieval parameters used to derive total and partial column concentrations of ozone. Retrievals at TAO employ the optimal estimation method (OEM), and some impacts of the necessary a priori constraints are examined. In March 2004, after participating in a retrieval algorithm user intercomparison exercise, the TAO FTS was granted the status of a Complementary Observation Station within the international community of high-resolution FTS users in the Network for the Detection of Atmospheric Composition and Change (NDACC). During this exercise, average differences between total columns retrieved from the same spectra by different users were below 2.1% for O 3 , HCl, and N 2 O in the blind phase, and below 1% in the open phase, when all retrieval constraints were identical. Finally, a 2.5-yr time series of monthly mean stratospheric ozone columns agrees within 3% with those retrieved from Optical Spectrograph and Infrared Imager System (OSIRIS) measurements on board the Odin satellite, which is within the errors of both measurement platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.