Interleukin-1 beta (IL-1 beta)-converting enzyme cleaves the IL-1 beta precursor to mature IL-1 beta, an important mediator of inflammation. The identification of the enzyme as a unique cysteine protease and the design of potent peptide aldehyde inhibitors are described. Purification and cloning of the complementary DNA indicates that IL-1 beta-converting enzyme is composed of two nonidentical subunits that are derived from a single proenzyme, possibly by autoproteolysis. Selective inhibition of the enzyme in human blood monocytes blocks production of mature IL-1 beta, indicating that it is a potential therapeutic target.
SummaryThe high-output pathway of nitric oxide production helps protect mice from infection by several pathogens, including Mycobacterium tuberculosis. However, based on studies of cells cultured from blood, it is controversial whether human mononuclear phagocytes can express the corresponding inducible nitric oxide synthase (iNOS; NOS2). The present study examined alveolar macrophages fixed directly after bronchopulmonary lavage. An average of 65% of the macrophages from 11 of 11 patients with untreated, culture-positive pulmonary tuberculosis reacted with an antibody documented herein to be monospecific for human NOS2. In contrast, a mean of 10% ofbronchoalveolar lavage cells were positive from each of five clinically normal subjects. Tuberculosis patients' macrophages displayed diaphorase activity in the same proportion that they stained for NOS2, under assay conditions wherein the diaphorase reaction was strictly dependent on NOS2 expression. Bronchoalveolar lavage specimens also contained NOS2 mRNA. Thus, macrophages in the lungs of people with clinically active Mycobacterium tuberculosis infection often express catalytically competent NOS2.
To examine the activity of matrix metalloproteinases (MMPs) and aggrecanase in control and diseased human articular cartilage, metabolic fragments of aggrecan were detected with monospecific antipeptide antibodies. The distribution and quantity of MMP-generated aggrecan G1 fragments terminating in VDIPEN 341 were compared with the distribution of aggrecanase-generated G1 fragments terminating in NITEGE 373 . Both types of G1 fragments were isolated from osteoarthritic cartilage. The sizes were consistent with a single enzymatic cleavage in the interglobular domain region, with no further proteolytic processing of these fragments. Both neoepitopes were also detected by immunohistochemistry in articular cartilage from patients undergoing joint replacement for osteoarthritis (OA), rheumatoid arthritis (RA), and in cartilage from adults with no known joint disease.In control specimens, the staining intensity for both G1 fragments increased with age, with little staining in cartilage from 22-wk-old fetal samples. There was also an increase with age in the extracted amount of MMP-generated neoepitope in relation to both aggrecan and collagen content, confirming the immunohistochemical results. After the age of 20-30 yr this relationship remained at a steady state. The staining for the MMP-generated epitope was most marked in control cartilage exhibiting histological signs of damage, whereas intense staining for the aggrecanase-generated fragment was often noted in adult cartilage lacking overt histological damage . Intense staining for both neoepitopes appeared in the more severely fibrillated, superficial region of the tissue.Intense immunostaining for both VDIPEN-and NITEGEneoepitopes was also detected in joint cartilage from patients with OA or RA. Cartilage in these specimens was significantly more degraded and high levels of staining for both epitopes was always seen in areas with extensive cartilage damage. The levels of extracted VDIPEN neoepitope relative to collagen or aggrecan in both OA and RA samples were similar to those seen in age-matched control specimens.Immunostaining for both types of aggrecan fragments was seen surrounding the cells but also further removed in the interterritorial matrix. In some regions of the tissue, both neoepitopes were found while in others only one was detected. Thus, generation and/or turnover of these specific catabolic aggrecan fragments is not necessarily coordinated. Our results are consistent with the presence in both normal and arthritic joint cartilage of proteolytic activity against aggrecan based on both classical MMPs and "aggrecanase.
In Alzheimer's disease (AD), affected neurons accumulate beta amyloid protein, components of which can induce mouse microglia to express the high-output isoform of nitric oxide synthase (NOS2) in vitro. Products of NOS2 can be neurotoxic. In mice, NOS2 is normally suppressed by transforming growth factor beta 1 (TGF-beta 1). Expression of TGF-beta 1 is decreased in brains from AD patients, a situation that might be permissive for accumulation of NOS2. Accordingly, we investigated the expression of NOS2 in patients with AD, using three monospecific antibodies: a previously described polyclonal and two new monoclonal antibodies. Neurofibrillary tangle-bearing neurons and neuropil threads contained NOS2 in brains from each of 11 AD patients ranging in age from 47 to 81 years. NOS2 was undetectable in brains from 6 control subjects aged 23-72 years, but was expressed in small amounts in 3 control subjects aged 77-87 years. Thus, human neurons can express NOS2 in vivo. The high-output pathway of NO production may contribute to pathogenesis in AD.
We have demonstrated spontaneous nitric oxide (NO) production by primary synovial cultures from rheumatoid (RA) and osteoarthritis patients. Increased NO production followed addition of staphylococcal enterotoxin B. Immunochemical double staining with specific anti-human inducible NO synthase (iNOS) and nonspecific esterase (NSE), or anti-CD68 (markers for tissue macrophages) showed that although many lining layer cells in RA synovium expressed iNOS, most (approximately 90%) were NSE- and CD68-, with only a minor population (approximately 10%) which were iNOS+, CD68+/NSE+. These data demonstrate the capacity for high output of NO by human synovial tissue and show that, although human macrophages can express high levels of iNOS, the majority of cells expressing iNOS are fibroblasts. We also report that synoviocytes, and macrophage cell lines, cultured with the NO donor, S-nitroso-acetyl penicillamine, produced high concentrations of tumor necrosis factor (TNF)-alpha. These results suggest that NO may mediate pathology in RA through the induction of TNF-alpha production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.