The earthquake with a bodywave magnitude mb=5.5 , which occurred near Tori Shima, Japan, on June 13, 1984 (origin time: 0229:25.3 UT, 31.448øN, 140.036øE, depth of 10 km, mb=5.5, MS=5.5 ) is anomalous because it generated tsunamis which are disproportionately large for the magnitude of the earthquake. At Hachijo Island, 150 km from the epicenter, tsunamis were visually observed with peak-to-peak amplitude of 130 to 150 cm. Long-period seismic radiation is also anomalous. Love waves are almost absent, and Rayleigh waves are radiated with equal amplitude and phase in all directions. A simple double-couple model cannot explain these observations. With the assumption of no net volume change at the source, these data can be best explained with a compensated linear vector dipole ( Except for the anomalous tsunamis, no obviously unusual observations have been reported. In view of the importance of this event in relation to magmatic processes and tsunami generation, we made a detailed analysis of global seismic data observed for this earthquake. We will show that under the assumption of no net volume change, this earthquake can be best represented by a compensated linear vector dipole (CLVD) rather than the conventional double force couple.lshimoto [1932]
a large earthquake (M~. 7.5) occurred just north of Flores Island, Indonesia which, along with the tsunami it generated, killed more than 2,000 people. In this study, teleseismic P and SH waves, as well as PP waves from distances up to 123 ~ are inverted for the orientations and time histories of multiple point sources. By repeating tbe inversion for reasonable values of depth, time separation and spatial separation, a 2-fault model is developed. Next, the vertical deformation of the seafloor is estimated from this fault model. Using a detailed bathymetric model, linear and nonlinear tsunami propagation models are tested. The data consist of a single tide gauge record at Palopo (650 km to the north), as well as tsunami runup height measurements from Flores Island and nearby islands. Assuming a tsunami runup amplification factor of two, the two-fault model explains the tide gauge record and the tsunami runup heights on most of Flores Island. It cannot, however, explain the large tsunami runup heights observed near Leworahang (on Hading Bay) and Riangkroko (on the northeast peninsula). Massive coastal slumping was observed at both of these locations. A final model, which in addition to the two faults, includes point sources of large vertical displacement at these two locations explains the observations quite well.
Summary. Moment tensor inversion methods can be applied with success in the determination of source properties of simple earthquakes. However, these methods utilize the assumption of a point source, which is inadequate for modelling many complicated, shallow earthquakes. For complex earthquakes, an inversion using finite faulting models is desirable but the number of parameters involved requires that a good starting model be found or that independent constraints be placed on some of the parameters. A method is presented for low‐pass filtering both the data and Green's functions, passing only signals with wavelengths greater than the dimension of the entire fault. The filter tends to smooth complications in the waveforms and allows application of the point source moment tensor inversion. This method is applied to body waves from the 1978 Thessaloniki, Greece, earthquake, the 1971 San Fernando earthquake and to a multiple‐point source synthetic model of the San Fernando event. For the Thessaloniki event, although a multiple‐source mechanism has been suggested, inversion results before and after filtering were essentially identical, indicating that a point source mechanism is sufficient in modelling the long‐period, teleseismic body waves. In the case of the San Fernando earthquake, the point source Green's functions were incapable of simultaneously modelling the P‐ and SH‐waves. Inversion of P‐waves alone resulted in extreme parameter resolution problems, but allowed constraint in one axis of the moment tensor and suggested an overall source time function. Inversion of a synthetic San Fernando data set yielded similar results, but allowed an investigation of the shortcomings of the method under controlled circumstances. Although the results may require substantial interpretation, the method presented represents a simple first step in the analysis of complex earthquakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.