Suicide Basin is a partly glacierized marginal basin of Mendenhall Glacier, Alaska, that has released glacier lake outburst floods (GLOFs) annually since 2011. The floods cause inundation and erosion in the Mendenhall Valley, impacting homes and other infrastructure. Here, we utilize in-situ and remote sensing data to assess the recent evolution and current state of Suicide Basin. We focus on the 2018 and 2019 melt seasons, during which we collected most of our data, partly using unmanned aerial vehicles (UAVs). To provide longer-term context, we analyze DEMs collected since 2006 and model glacier surface mass balance over the 2006-2019 period. During the 2018 and 2019 outburst flood events, Suicide Basin released ∼ 30 × 10 6 m 3 of water within approximately 4-5 days. Since lake drainage was partial in both years, these ∼ 30 × 10 6 m 3 represent only a fraction (∼ 60%) of the basin's total storage capacity. In contrast to previous years, subglacial drainage was preceded by supraglacial outflow over the ice dam, which lasted ∼ 1 day in 2018 and 6 days in 2019. Two large calving events occurred in 2018 and 2019, with submerged ice breaking off the main glacier during lake filling, thereby increasing the basin's storage capacity. In 2018, the floating ice in the basin was 36 m thick on average. In 2019, ice thickness was 29 m, suggesting rapid decay of the ice tongue despite increasing ice inflow from Mendenhall Glacier. The ice dam at the basin entrance thinned by more than 5 m a-1 from 2018 to 2019, which is approximately double the rate of the reference period 2006-2018. While ice-dam thinning reduces water storage capacity in the basin, that capacity is increased by declining ice volume in the basin and longitudinal lake expansion, with the latter process challenging to predict. The potential for premature drainage onset (i.e., drainage before the lake's storage capacity is reached), intermittent drainage decelerations, and early drainage termination further complicates prediction of future GLOF events.
Glacial fjord habitats are undergoing rapid change as a result of contemporary global warming, yet little is known about how glaciers influence marine ecosystems. These ecosystems provide important feeding, breeding and rearing grounds for a wide variety of marine organisms, including seabirds of management concern. To characterize ocean conditions and marine food webs near tidewater glaciers, we conducted monthly surveys of oceanographic variables, plankton, fish and seabirds in Kenai Fjords, Alaska, from June to August of 2007 and 2008. We also measured tidal current velocities near glacial features. We found high sediment load from glacial river runoff played a major role in structuring the fjord marine ecosystem. Submerged moraines (sills) isolated cool, fresh, stratified and silt‐laden inner fjord habitats from oceanic influence. Near tidewater glaciers, surface layers of turbid glacial runoff limited availability of light to phytoplankton, but macrozooplankton were abundant in surface waters, perhaps due to the absence of a photic cue for diel migration. Fish and zooplankton community structure varied along an increasing temperature gradient throughout the summer. Acoustic measurements indicated that low density patches of fish and zooplankton were available in the surface waters near glacial river outflows. This is the foraging habitat occupied most by Kittlitz’s murrelet (Brachyramphus brevirostris), a rare seabird that appears to be specialized for life in glacially influenced environments. Kittlitz’s murrelets were associated with floating glacial ice, and they were more likely to occur near glaciers, in deeper water, and in areas with high acoustic backscatter. Kittlitz’s murrelet at‐sea distribution was limited to areas influenced by turbid glacial outflows, and where prey was concentrated near the surface in waters with low light penetration. Tidewater glaciers impart unique hydrographic characteristics that influence marine plankton and fish communities, and this has cascading effects on marine food webs in these ecosystems.
The U.S. Geological Survey is actively investigating remote sensing of surface velocity and river discharge (discharge) from satellite-, high altitude-, small, unmanned aircraft systems- (sUAS or drone), and permanent (fixed) deployments. This initiative is important in ungaged basins and river reaches that lack the infrastructure to deploy conventional streamgaging equipment. By coupling alternative discharge algorithms with sensors capable of measuring surface velocity, streamgage networks can be established in regions where data collection was previously impractical or impossible. To differentiate from satellite or high-altitude platforms, near-field remote sensing is conducted from sUAS or fixed platforms. QCam is a Doppler (velocity) radar mounted and integrated on a 3DR© Solo sUAS. It measures the along-track surface velocity by spot dwelling in a river cross section at a vertical where the maximum surface velocity is recorded. The surface velocity is translated to a mean-channel (mean) velocity using the probability concept (PC), and discharge is computed using the PC-derived mean velocity and cross-sectional area. Factors including surface-scatterer quality, flight altitude, propwash, wind drift, and sample duration may affect the radar-returns and the subsequent computation of mean velocity and river discharge. To evaluate the extensibility of the method, five science flights were conducted on four rivers of varying size and dynamics and included the Arkansas River, Colorado (CO), USA (two events); Salcha River near Salchaket, Alaska (AK), USA; South Platte River, CO, USA; and the Tanana River, AK, USA. QCam surface velocities and river discharges were compared to conventional streamgaging methods, which represented truth. QCam surface velocities for the Arkansas River, Salcha River, South Platte River, and Tanana River were 1.02 meters per second (m/s) and 1.43 m/s; 1.58 m/s; 0.90 m/s; and 2.17 m/s, respectively. QCam discharges (and percent differences) were 9.48 (0.3%) and 20.3 cubic meters per second (m3/s) (2.5%); 62.1 m3/s (−10.4%); 3.42 m3/s (7.3%), and 1579 m3/s (−18.8%). QCam results compare favorably with conventional streamgaging and are a viable near-field remote sensing technology that can be operationalized to deliver real-time surface velocity, mean velocity, and river discharge, if cross-sectional area is available.
Appendix 1. Coordinate and elevation file for bathymetric data collected by the USGS and topographic data collected by ADOT&PF. Appendix 2. Coordinates and elevations and predicted water-surface elevations, flow velocities, and horizontal components of velocity for the calibration discharge of 25,600 ft 3 /s. Appendix 3. Coordinates and elevations and predicted water-surface elevations, flow velocities, and horizontal components of velocity for the 100-year recurrence interval discharge of 51,900 ft 3 /s. Appendix 4. Coordinates and elevations and predicted water-surface elevations, flow velocities, and horizontal components of velocity for the simulation of the 100-year recurrence interval discharge of 51,900 ft 3 /s with the existing bridge piers removed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.