Adipose tissue is a complex, essential, and highly active metabolic and endocrine organ. Besides adipocytes, adipose tissue contains connective tissue matrix, nerve tissue, stromovascular cells, and immune cells. Together these components function as an integrated unit. Adipose tissue not only responds to afferent signals from traditional hormone systems and the central nervous system but also expresses and secretes factors with important endocrine functions. These factors include leptin, other cytokines, adiponectin, complement components, plasminogen activator inhibitor-1, proteins of the renin-angiotensin system, and resistin. Adipose tissue is also a major site for metabolism of sex steroids and glucocorticoids. The important endocrine function of adipose tissue is emphasized by the adverse metabolic consequences of both adipose tissue excess and deficiency. A better understanding of the endocrine function of adipose tissue will likely lead to more rational therapy for these increasingly prevalent disorders. This review presents an overview of the endocrine functions of adipose tissue.
TLR4 is the receptor for LPS and plays a critical role in innate immunity. Stimulation of TLR4 activates proinflammatory pathways and induces cytokine expression in a variety of cell types. Inflammatory pathways are activated in tissues of obese animals and humans and play an important role in obesity-associated insulin resistance. Here we show that nutritional fatty acids, whose circulating levels are often increased in obesity, activate TLR4 signaling in adipocytes and macrophages and that the capacity of fatty acids to induce inflammatory signaling in adipose cells or tissue and macrophages is blunted in the absence of TLR4. Moreover, mice lacking TLR4 are substantially protected from the ability of systemic lipid infusion to (a) suppress insulin signaling in muscle and (b) reduce insulin-mediated changes in systemic glucose metabolism. Finally, female C57BL/6 mice lacking TLR4 have increased obesity but are partially protected against high fat diet-induced insulin resistance, possibly due to reduced inflammatory gene expression in liver and fat. Taken together, these data suggest that TLR4 is a molecular link among nutrition, lipids, and inflammation and that the innate immune system participates in the regulation of energy balance and insulin resistance in response to changes in the nutritional environment.
A total deficiency in or resistance to the protein leptin causes severe obesity. As leptin levels rise with increasing adiposity in rodents and man, it is proposed to act as a negative feedback 'adipostatic signal' to brain centres controlling energy homeostasis, limiting obesity in times of nutritional abundance. Starvation is also a threat to homeostasis that triggers adaptive responses, but whether leptin plays a role in the physiology of starvation is unknown. Leptin concentration falls during starvation and totally leptin-deficient ob/ob mice have neuroendocrine abnormalities similar to those of starvation, suggesting that this may be the case. Here we show that preventing the starvation-induced fall in leptin with exogenous leptin substantially blunts the changes in gonadal, adrenal and thyroid axes in male mice, and prevents the starvation-induced delay in ovulation in female mice. In contrast, leptin repletion during this period of starvation has little or no effect on body weight, blood glucose or ketones. We propose that regulation of the neuroendocrine system during starvation could be the main physiological role of leptin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.