Subsurface saline waters in sedimentary basins can be divided into three groups based on their anionic composition and salinity: (1) Waters with anions other than Cl dominant. These include Na-HCO 3 and Na-acetate waters. Most such waters have salinities of less than 10 000 mg 1 −1 ; (2) Cl-dominated, halite-undersaturated waters having salinities between 10 000 and 250 000–300 000 mg l −1 . These include Na-Cl waters and, at higher salinities, Na-Ca-Cl waters; (3) Cl-dominated, halite-saturated waters with salinities typically in excess of 300 000 mg 1 −1 . Ca and K become increasingly dominant and Na decreases with increasing salinity. Subaerial evaporation of marine and continental waters and the subsurface dissolution of evaporites both have the potential for producing the range of salinities and dissolved chloride concentrations observed for most subsurface brines, but not their major cation compositions. The broad systematic increase in dissolved Na, K, Mg, Ca, and Sr and decrease in pH and alkalinity with increasing salinity support the hypothesis that the approach toward thermodynamic buffering by silicate-carbonate ± (halide) mineral assemblages is a first-order control on subsurface fluid compositions, even at temperatures well below 100°C. The chemical potential of chloride or, alternatively, the aqueous concentration of anionic charge, is a master variable which ranks in importance with such other variables as pressure and temperature in driving fluid-rock exchange and controlling bulk fluid compositions. This variable is in turn controlled largely by physical processes of fluid advection and dispersion. Dissolved organic acid anions are associated primarily with low salinity waters, but dissolved metals, such as Cu, Pb, and Zn are preferentially found in brines having salinities in excess of 200 g 1 −1 . The high chloride concentration and low pH of these saline waters may enhance solubilization of metals through chloride complexing.
Pleistocene melting of kilometer-thick continental ice sheets significantly impacted regional-scale groundwater flow in the low-lying stable interiors of the North American and Eurasian cratons. Glacial meltwaters penetrated hundreds of meters into the underlying sedimentary basins and fractured crystalline bedrock, disrupting relatively stagnant saline fluids and creating a strong disequilibrium pattern in fluid salinity. To constrain the impact of continental glaciation on variable density fluid flow, heat and solute transport in the Michigan Basin, we constructed a transient two-dimensional finite-element model of the northern half of the basin and imposed modern versus Pleistocene recharge conditions. The sag-type basin contains up to approximately 5 km of Paleozoic strata (carbonates, siliciclastics, and bedded evaporites) overlain by a thick veneer (up to 300 m) of glacial deposits. Formation water salinity increases exponentially from <0.5 g l )1 total dissolved solids (TDS) near the surface to >350 g l )1 TDS at over 800 m depth. Model simulations show that modern groundwater flow is primarily restricted to shallow glacial drift aquifers with discharge to the Great Lakes. During the Pleistocene, however, high hydraulic heads from melting of the Laurentide Ice Sheet reversed regional flow patterns and focused recharge into Paleozoic carbonate and siliciclastic aquifers. Dilute waters (<20 g l )1 TDS) migrated approximately 110 km laterally into the Devonian carbonate aquifers, significantly depressing the freshwater-saline water mixing zones. These results are consistent with 14 C ages and oxygen isotope values of confined groundwaters in Devonian carbonates along the basin margin, which reflect past recharge beneath the Laurentide Ice Sheet (14-50 ka). Constraining the paleohydrology of glaciated sedimentary basins, such as the Michigan Basin, is important for determining the source and residence times of groundwater resources, in addition to resolving geologic forces responsible for basinal-scale fluid and solute migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.