The local and larger-scale environments of 184 long-lived supercell events (containing one or more supercells with lifetimes ≥4 h; see Part I of this paper) are investigated and subsequently compared with those from 137 moderate-lived events (average supercell lifetime 2–4 h) and 119 short-lived events (average supercell lifetime ≤2 h) to better anticipate supercell longevity in the operational setting. Consistent with many previous studies, long-lived supercells occur in environments with much stronger 0–8-km bulk wind shear than what is observed for short-lived supercells; this strong shear leads to significant storm-relative winds in the mid- to upper levels for the longest-lived supercells. Additionally, the bulk Richardson number falls into a relatively narrow range for the longest-lived supercells—ranging mostly from 5 to 45. The mesoscale to synoptic-scale environment can also predispose a supercell to be long or short lived, somewhat independent of the local environment. For example, long-lived supercells may occur when supercells travel within a broad warm sector or else in close proximity to mesoscale or larger-scale boundaries (e.g., along or near a warm front, an old outflow boundary, or a moisture/buoyancy axis), even if the deep-layer shear is suboptimal. By way of contrast, strong atmospheric forcing can result in linear convection (and thus shorter-lived supercells) in a strongly sheared environment that would otherwise favor discrete, long-lived supercells.
In the United States, the dramatic increase in jet fuel usage and kilometers flown has led to speculation of a similar increase in jet contrails. However, contrail occurrence depends heavily upon the meteorological conditions near cruising altitudes (i.e. the tropopause, 10–12 km altitude). This study reports a contrail mid‐season contemporary climatology for the coterminous United States (2000–2002), and compares the frequencies with those previously reported for an earlier (1977–1979) period, to determine spatial and seasonal contrail frequency changes. For both climatologies, contrail occurrence is derived from the analysis of high‐resolution satellite imagery. Data on US jet aircraft flight activity were obtained to assess their relationship to contrail frequency, as were NCEP‐NCAR reanalysis data to determine the changes in tropopause‐level atmospheric conditions.For the 2000–2002 period, contrails comprise a distinct high (low) frequency pattern in the East (West) halves of the United States. Seasonally, there is a contrail association with the latitudinal migration of the jet stream and a US‐wide peak contrail frequency during winter (January). The inter‐monthly variations in contrail frequency are significantly different from each other but show no association with variations in jet flight activity, indicating a greater role for meteorological conditions. Between the 1977–1979 and 2000–2002 periods, there were strong spatial and seasonal asymmetries to the contrail frequency change. These involve a cooling (warming) of the tropopause for the largest (smallest) frequency increases, which shows some association with the switch in positive and negative phases of the Arctic Oscillation. The role of upper tropospheric conditions and links to hemispheric‐scale teleconnections should be considered when projecting contrail frequency changes and their future impacts on climate. Copyright © 2006 Royal Meteorological Society
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.