Many viruses and certain cellular mRNAs initiate protein synthesis from a highly structured RNA sequence in the 59 untranslated region, called the internal ribosome entry site (IRES). In hepatitis C virus (HCV), the IRES RNA functionally replaces several large initiation factor proteins by directly recruiting the 43S particle. Using quantitative binding assays, modification interference of binding, and chemical and enzymatic footprinting experiments, we show that three independently folded tertiary structural domains in the IRES RNA make intimate contacts to two purified components of the 43S particle: the 40S ribosomal subunit and eukaryotic initiation factor 3 (eIF3). We measure the affinity and demonstrate the specificity of these interactions for the first time and show that the high affinity interaction of IRES RNA with the 40S subunit drives formation of the IRES RNA•40S•eIF3 ternary complex. Thus, the HCV IRES RNA recruits 43S particles in a mode distinct from both eukaryotic cap-dependent and prokaryotic ribosome recruitment strategies, and is architecturally and functionally unique from other large folded RNAs that have been characterized to date.
Summary Changes to the chromatin structure accompany aging, but the molecular mechanisms underlying aging and the accompanying changes to the chromatin are unclear. Here we report a mechanism whereby altering chromatin structure regulates lifespan. We show that normal aging is accompanied by a profound loss of histone proteins from the genome. Indeed, yeast lacking the histone chaperone Asf1 or acetylation of histone H3 on lysine 56 are short lived and this appears to be at least partly due to their having decreased histone levels. Conversely, increasing the histone supply by inactivation of the Hir (histone information regulator) complex or overexpression of histones dramatically extends lifespan, via a pathway that is distinct from previously known pathways of lifespan extension. This study indicates that maintenance of the fundamental chromatin structure is critical for slowing down the aging process and reveals that increasing the histone supply extends lifespan.
The outbreak of Zika virus (ZIKV) and associated fetal microcephaly mandates efforts to understand the molecular processes of infection. Related flaviviruses produce non-coding subgenomic flaviviral RNAs (sfRNAs) that are linked to pathogenicity in fetal mice. These viruses make sfRNAs by co-opting a cellular exoribonuclease using structured RNAs called xrRNAs. Here, we demonstrate that ZIKV infected monkey and human epithelial cells, mouse neurons, and mosquito cells produce sfRNAs. The RNA structure that is responsible for ZIKV sfRNA production forms a complex fold that is likely found in many pathogenic flaviviruses. Mutations that disrupt the structure affect exonuclease resistance in vitro and sfRNA formation during infection. The complete ZIKV xrRNA structure clarifies the mechanism of exonuclease resistance and identifies features that may modulate function in diverse flaviviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.