CD4+CD25+ T regulatory (TR) cells are an important regulatory component of the adaptive immune system that limit autoreactive T cell responses in various models of autoimmunity. This knowledge was generated by previous studies from our lab and others using TR cell supplementation and depletion. Contrary to dogma, we report here that injection of anti-CD25 mAb results in the functional inactivation, not depletion, of TR cells, resulting in exacerbated autoimmune disease. Supporting this, mice receiving anti-CD25 mAb treatment display significantly lower numbers of CD4+CD25+ T cells but no change in the number of CD4+FoxP3+ TR cells. In addition, anti-CD25 mAb treatment fails to both reduce the number of Thy1.1+ congenic CD4+CD25+ TR cells or alter levels of CD25 mRNA expression in treatment recipients. Taken together, these findings have far-reaching implications for the interpretation of all previous studies forming conclusions about CD4+CD25+ TR cell depletion in vivo.
In vivo administration of anti-CD3 Ab induces both immune tolerance and undesirable side-effects resulting from nonspecific proinflammatory cytokine production. In the current study, we investigated the therapeutic potential of two structurally altered forms of the anti-CD3 Ab in ameliorating established experimental autoimmune encephalomyelitis. Administration of either a chimeric (NM-IgG3) or digestion product (NM-F(ab′)2) form of the anti-CD3 Ab during established experimental autoimmune encephalomyelitis conferred significant protection from clinical disease progression and was associated with decreased Ag-specific T cell proliferation, cytokine production, and CNS inflammation. Interestingly, while this protection correlated with an increase in the frequency of CD4+CD25+ regulatory T cells, neither prior depletion of regulatory T cells nor anti-TGF-β treatment abrogated the treatment’s efficacy. Importantly, both treatments induced normal levels of intracellular Ca2+-flux, but significantly diminished levels of TCR signaling. Consequent to this decreased level of TCR-mediated signaling were alterations in the level of apoptosis and CD4+ T cell trafficking resulting in a profound lymphopenia. Collectively, these results indicate that nonmitogenic anti-CD3 directly induces a state of immune unresponsiveness in primed pathogenic autoreactive effector cells via mechanisms that may involve the induction of T cell tolerance, apoptosis, and/or alterations in cell trafficking.
Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by CD4 and CD8 T cells specific for epitopes on numerous diabetogenic autoantigens resulting in loss of glucose homeostasis. Employing antigen-specific tolerance induced by i.v. administration of syngeneic splenocytes ECDI cross-linked to various diabetogenic antigens/epitopes (Ag-SP), we show that epitope spreading plays a functional role in the pathogenesis of T1D in NOD mice. Specifically, Ag-SP coupled with intact insulin, Ins B9–23 or Ins B15–23, but not GAD65509–528, GAD65524–543 or IGRP206–214, protected 4–6 week-old NOD mice from the eventual development of clinical disease; infiltration of immune cells to the pancreatic islets; and blocked the induction of DTH responses in a Treg-dependent, antigen-specific manner. However, tolerance induction in 19–21 week-old NOD mice was effectively accomplished only by Ins-SP, suggesting Ins B9–23 is a dominant initiating epitope, but autoimmune responses to insulin epitope(s) distinct from Ins B9–23 emerge during disease progression.
Of the nine known members of the CCR4-NOT complex, CCR4/CAF1 are most important in mRNA deadenylation whereas the NOT1-5 proteins are most critical for transcriptional repression. Whole genome microarray analysis using deletions in seven of the CCR4-NOT genes was used to determine the overall mRNA expression patterns that are affected by members of the yeast CCR4-NOT complex. Under glucose conditions, ccr4 and caf1 displayed a high degree of similarity in the manner that they affected gene expression. In contrast, the not deletions were similar in the way they affected genes, but showed no correlation with that of ccr4/caf1. A number of groups of functionally related proteins were specifically controlled by the CCR4/CAF1 or NOT modules. Importantly, the NOT proteins preferentially affected SAGA-controlled gene expression. Also, both the CCR4/CAF1 and NOT group of proteins shared much greater similarities in their effects on gene expression during the stress of glucose deprivation. BTT1, a member of the nascent polypeptide association complex that binds the ribosome, was shown to be a tenth member of the CCR4-NOT complex, interacting through CAF130. Microarray analysis indicated that BTT1 and CAF130 correlate very highly in their control of gene expression and preferentially repress genes involved in ribosome biogenesis. These results indicate that distinct portions of the CCR4-NOT complex control a number of different cellular processes.
CCR4, a poly(A) deadenylase of the exonuclease III family, is a component of the multiprotein CCR4-NOT complex of Saccharomyces cerevisiae that is involved in mRNA degradation. CCR4, unlike all other exonuclease III family members, contains a leucine-rich repeat (LRR) motif through which it makes contact to CAF1 and other factors. The LRR residues important in contacting CAF1 were identified by constructing 29 CCR4 mutations encompassing a majority (47 of 81) of residues interstitial to the conserved structural residues. Twohybrid and immunoprecipitation data revealed that physical contact between CAF1 and the LRR is blocked by mutation of just two ␣-helix/-helix strand loop residues linking the first and second repeats. In contrast, CAF16, a potential ligand of CCR4, was abrogated in its binding to the LRR by mutations in the N terminus of the second -strand. The LRR domain was also found to contact the deadenylase domain of CCR4, and deletion of the LRR region completely inhibited CCR4 enzymatic activity. Mutations throughout the -sheet surface of the LRR, including those that did not specifically interfere with contacts to CAF1 or CAF16, significantly reduced CCR4 deadenylase activity. These results indicate that the CCR4-LRR, in addition to binding to CAF1, plays an essential role in the CCR4 deadenylation of mRNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.