Long‐term fish community surveys were carried out in the Michigan waters of Lake Huron using bottom trawls from 1976 to 2006. Trends in abundance indices for common species (those caught in 10% or more of trawl tows) were estimated for two periods: Early (1976‐1991) and late (1994‐2006). All common species significantly decreased in abundance during the late period with the exception of the johnny darter Etheostoma nigrum and spottail shiner Notropis hudsonius, which showed no significant trends, and the round goby Neogobius melanostomus, which increased in abundance. Percentage decreases in abundance indices between 1994‐1995 and 2005‐2006 ranged from 66.4% to 99.9%, and seven species decreased in abundance by more than 90%. The mean biomass of all common species in 2006 was the lowest observed in the time series and was less than 5% of that observed in the mid‐1990s. The mean number of common species captured per trawl has also decreased since the mid‐1990s. Several factors, including recent invasion of the lake by multiple exotic species, may have contributed to these declines, but insufficient published data are currently available to determine which factors are most important. Our observations suggest that significant changes have occurred in the ecology of Lake Huron since the mid‐1990s. The extent of these changes indicates that the deepwater demersal fish community in Lake Huron is undergoing collapse.
Traditionally, fish habitat requirements have been described from local-scale environmental variables. However, recent studies have shown that studying landscape-scale processes improves our understanding of what drives species assemblages and distribution patterns across the landscape. Our goal was to learn more about constraints on the distribution of Michigan stream fish by examining landscape-scale habitat variables. We used classification trees and landscape-scale habitat variables to create and validate presence-absence models and relative abundance models for Michigan stream fishes. We developed 93 presence-absence models that on average were 72% correct in making predictions for an independent data set, and we developed 46 relative abundance models that were 76% correct in making predictions for independent data. The models were used to create statewide predictive distribution and abundance maps that have the potential to be used for a variety of conservation and scientific purposes. [Article] STREAM FISH DISTRIBUTION MODELS 977 978 STEEN ET AL. 980 STEEN ET AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.