In this study we measured (n = 6) the phosphocreatine-to-inorganic phosphate ratio (PCr/Pi), Pi, and pH with 31P-nuclear magnetic resonance (31P-NMR) in the human forearm during static work at 30% of maximal voluntary contraction (MVC) for 2 min followed immediately by 3 min of circulatory arrest (forearm arterial occlusion). Static exercise, with its central volitional and skeletal muscle metabolic and mechanical afferent components, caused a rise in heart rate (HR, 32%), blood pressure (BP, 29%), and calf vascular resistance (calf R, 30%). During forearm occlusion after static exercise, HR returned to base line, the increase in BP was attenuated by 30%, and calf R remained elevated and unchanged. The percent change in calf R was correlated with forearm cellular pH (R = 0.56, P less than 0.001) but only weakly associated with PCr/Pi (R = 0.33, P less than 0.042). 30% MVC for 1 min followed by arterial occlusion (3 min) reduced PCr/Pi by 65% and pH by 0.16 U (P less than 0.05). Calf R was unchanged. Circulatory arrest alone (20 min) caused no change in either pH or calf R but large changes in PCr/Pi (50% reduction). We conclude that 1) there is an association between forearm cellular acidosis and calf vasconstriction during static forearm exercise and 2) large changes in PCr/Pi without concomitant changes in pH are not associated with changes in calf R.
IMPORTANCE Although opioids are used to treat neonatal abstinence syndrome (NAS), the best pharmacologic treatment has not been established. OBJECTIVE To compare the safety and efficacy of methadone and morphine in NAS. DESIGN, SETTING, AND PARTICIPANTS In this randomized, double-blind, intention-to-treat trial, term infants from 8 US newborn units whose mothers received buprenorphine, methadone, or opioids for pain control during pregnancy were eligible. A total of 117 infants were randomized to receive methadone or morphine from February 9, 2014, to March 6, 2017. Mothers who declined randomization could consent to data collection and standard institutional treatment. INTERVENTIONS Infants were assessed with the Finnegan Neonatal Abstinence Scoring System every 4 hours and treated with methadone or placebo every 4 hours or morphine every 4 hours. Infants with persistently elevated Finnegan scores received dose increases. Infants who exceeded a predetermined opioid dose received phenobarbital. Dose reductions occurred every 12 to 48 hours when signs of NAS were controlled with therapy, stopping at 20% of the original dose. MAIN OUTCOMES AND MEASURES The primary end point was length of hospital stay (LOS). The secondary end points were LOS attributable to NAS and length of drug treatment (LOT). RESULTS A total of 183 mothers consented to have their infants in the study; 117 infants required treatment. Because 1 parent withdrew consent, data were analyzed on 116 infants (mean [SD] gestational age, 39.1 [1.1] weeks; mean [SD] birth weight, 3157 [486] g; 58 [50%] male). Demographic variables and risk factors were similar except for more prenatal cigarette exposure in infants who received methadone. Adjusting for study site and maternal opioid type, methadone was associated with decreased mean number of days for LOS by 14%
To evaluate the local circulatory changes that accompany chronic localized work, we studied the effects of a 4-wk handgrip work protocol on maximal forearm work-related blood flow (ml X min-1 X 100 ml-1) in the nondominant forearms of six normal subjects. The reactive hyperemic blood flow response (RHBF) was also evaluated pre- and posttraining in both forearms of each subject to determine whether maximal vasodilatory capacity would be enhanced. In addition, maximal O2 consumption (VO2max) was measured. We found that chronic handgrip work led to an increase in work-related blood flow (before, 22.4; after, 32.1; P less than 0.05); a drop in work-related minimal resistance (R) (before, 6.4; after, 4.1; P less than 0.05). RHBF rose in the chronically exercised extremity by 30% (before, 33.5; after, 43.7; P less than 0.05) as minimal R fell (before, 3.2; after, 2.2; P less than 0.05). RHBF and R in the unstimulated dominant forearm remained unchanged (blood flow: before, 33.5; after, 31.0; NS; R before, 3.2; after, 3.2; NS). VO2max (ml X kg-1 X min-1) did not change (before, 35.7; after, 34.0). These findings show that localized skeletal muscle forearm work is associated with a localized increase in vasodilation (RHBF). Thus the vascular system appears to be an independent integral partner in the training process.
We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.