The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.
We used whole brain functional MRI to investigate the neural network specifically engaged in the recognition of ''biological motion'' defined by point-lights attached to the major joints and head of a human walker. To examine the specificity of brain regions responsive to biological motion, brain activations obtained during a ''walker vs. non-walker'' discrimination task were compared with those elicited by two other tasks: (i) non-rigid motion (NRM), involving the discrimination of overall motion direction in the same ''point-lights'' display, and (ii) face-gender discrimination, involving the discrimination of gender in briefly presented photographs of men and women. Brain activity specific to ''biological motion'' recognition arose in the lateral cerebellum and in a region in the lateral occipital cortex presumably corresponding to the area KO previously shown to be particularly sensitive to kinetic contours. Additional areas significantly activated during the biological motion recognition task involved both, dorsal and ventral extrastriate cortical regions. In the ventral regions both facegender discrimination and biological motion recognition elicited activation in the lingual and fusiform gyri and in the Brodmann areas 22 and 38 in superior temporal sulcus (STS). Along the dorsal pathway, both biological motion recognition and non-rigid direction discrimination gave rise to strong responses in several known motion sensitive areas. These included Brodmann areas 19͞37, the inferior (Brodmann Area 39), and superior parietal lobule (Brodmann Area 7). Thus, we conjecture that, whereas face (and form) stimuli activate primarily the ventral system and motion stimuli primarily the dorsal system, recognition of biological motion stimuli may activate both systems as well as their confluence in STS. This hypothesis is consistent with our findings in stroke patients, with unilateral brain lesions involving at least one of these areas, who, although correctly reporting the direction of the point-light walker, fail on the biological motion task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.