A subset of glutamate receptors that are specifically sensitive to the glutamate analog N-methyl-D-aspartate (NMDA) are molecular coincidence detectors, necessary for activity-dependent processes of neurodevelopment and in sensory and cognitive functions. The activity of these receptors is modulated by the endogenous amino acid D-serine, but the extent to which D-serine is necessary for the normal development and function of the mammalian nervous system was previously unknown. Decreased signaling at NMDA receptors has been implicated in the pathophysiology of schizophrenia based on pharmacological evidence, and several human genes related to D-serine metabolism and glutamatergic neurotransmission have been implicated in the etiology of schizophrenia. Here we show that genetically modified mice lacking the ability to produce D-serine endogenously have profoundly altered glutamatergic neurotransmission, and relatively subtle but significant behavioral abnormalities that reflect hyperactivity and impaired spatial memory, and that are consistent with elevated anxiety.
The neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) results from integral deletions of the subtelomeric repeat D4Z4 on chromosome 4q. A disruption of chromatin structure affecting gene expression is thought to underlie the pathophysiology. The global gene expression profiling of mature muscle tissue presented here provides the first insight into an FSHD-specific defect in myogenic differentiation. FSHD expression profiles generated by oligonucleotide microarrays were compared with those from normal muscle as well as other types of muscular dystrophies (DMD, aSGD) in order to determine FSHD-specific changes. In addition, matched biopsies (affected and unaffected muscle) from individuals with FSHD served to monitor expression changes during the progression of the disease as well as to diminish non-specific changes resulting from individual variability. Among genes altered in an FSHD-specific and highly significant manner, many are involved in myogenic differentiation and suggest a partial block in the normal differentiation program. Indeed, many of the transcripts affected in FSHD represent direct targets of the transcription factor MyoD. Additional mis-expressed genes confirm a diminished capacity to buffer oxidative stress, as demonstrated in FSHD myoblasts. This enhanced vulnerability of proliferative stage myoblasts to reactive oxygen species is also disease-specific, further implicating a defect in FSHD muscle satellite cells. Importantly, none of the genes localizing to the FSHD region at 4q35 were found to exhibit a significantly altered pattern of expression in FSHD muscle. This finding was corroborated by expression analysis of FSHD muscle using a custom cDNA microarray containing 51 genes and ESTs from the 4q35 region. Disruptions in FSHD myogenesis and oxidative capacity may therefore not arise from a position effect mechanism as has been previously suggested, but rather from a global effect on gene regulation. Improper nuclear localization of 4qter is discussed as an alternative model for FSHD gene regulation and pathogenesis.
Serine racemase (SR) generates D-serine, a coagonist with glutamate at NMDA receptors. We show that SR is physiologically S-nitrosylated leading to marked inhibition of enzyme activity. Inhibition involves interactions with the cofactor ATP reflecting juxtaposition of the ATP-binding site and cysteine-113 (C113), the site for physiological S-nitrosylation. NMDA receptor physiologically enhances SR S-nitrosylation by activating neuronal nitricoxide synthase (nNOS) . These findings support a model whereby postsynaptic stimulation of nitric-oxide (NO) formation feeds back to presynaptic cells to S-nitrosylate SR and decrease D-serine availability to postsynaptic NMDA receptors.neuronal nitric-oxide synthase ͉ NMDA receptor ͉ S-nitrosylation G lutamate neurotransmission through NMDA receptors requires a coagonist originally thought to be glycine. Recent studies indicate that in most portions of the brain, D-serine is the physiological coagonist because selective degradation of D-serine but not glycine markedly reduces NMDA transmission (1, 2), whereas retraction of D-serine-producing glia in the hypothalamus of lactating rats also diminishes NMDA transmission (2). D-serine is formed from L-serine by serine racemase (SR), which, like D-serine, is selectively enriched in glia (2, 3), although recent studies indicate some neuronal localization (4). SR, a pyridoxal phosphate-requiring enzyme, also displays an absolute requirement for ATP, which is not hydrolyzed during SR activation (5). SR binds the glutamate receptor interacting protein, which also binds to AMPA subtypes of glutamate receptors with glutamate receptor interacting protein markedly activating SR and providing a means whereby glutamate stimulation of SR-containing cells augments D-serine formation (6).In postsynaptic cells, NMDA signaling is mediated in part by neuronal nitric-oxide synthase (nNOS) because calcium entering through NMDA receptor channels binds to calmodulin associated with nNOS (7,8). Extensive studies have documented a feedback from postsynaptic to presynaptic glutamatergic nerve terminals, which modulates NMDA neurotransmission, especially in long-term potentiation (9). Nitric oxide (NO) may be a retrograde messenger of long-term potentiation (10-12), although the area is controversial (12). Because SR is a component of the NMDA synaptic complex, we wondered whether it is influenced by NO. In the present study, we demonstrate that SR is physiologically S-nitrosylated leading to inhibition of enzyme activity mediated by interactions with ATP. NMDA transmission stimulates SR S-nitrosylation suggesting a feedback mechanism to diminish presynaptic formation of D-serine. ResultsWe demonstrated S-nitrosylation of SR in multiple ways. Incubation of the NO donor S-nitroso-glutathione (GSNO) with SR in vitro leads to robust nitrosylation (Fig. 1A). In HEK293 cells, treatment with the NO donor sodium nitroprusside also provides S-nitrosylation (Fig. 1B). NO produced by nNOS S-nitrosylates SR, as is evident in HEK293 cells transfected with nNOS (Fi...
Disagreements across data sources affect the effect size, statistical significance, and interpretation of trials and meta-analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.