A two-component recombinant fusion protein antigen was re-engineered and tested as a medical counter measure against the possible biological threat of aerosolized Yersinia pestis. The active component of the proposed subunit vaccine combines the F1 capsular protein and V virulence antigen of Y. pestis and improves upon the design of an earlier histidine-tagged fusion protein. In the current study, different production strains were screened for suitable expression and a purification process was optimized to isolate an F1-V fusion protein absent extraneous coding sequences. Soluble F1-V protein was isolated to 99% purity by sequential liquid chromatography including capture and refolding of urea-denatured protein via anion exchange, followed by hydrophobic interaction, concentration, and then transfer into buffered saline for direct use after frozen storage. Protein identity and primary structure were verified by mass spectrometry and Edman sequencing, confirming a purified product of 477 amino acids and removal of the N-terminal methionine. Purity, quality, and higher-order structure were compared between lots using RP-HPLC, intrinsic fluorescence, CD spectroscopy, and multi-angle light scattering spectroscopy, all of which indicated a consistent and properly folded product. As formulated with aluminum hydroxide adjuvant and administered in a single subcutaneous dose, this new F1-V protein also protected mice from wild-type and non-encapsulated Y. pestis challenge strains, modeling prophylaxis against pneumonic and bubonic plague. These findings confirm that the fusion protein architecture provides superior protection over the former licensed product, establish a foundation from which to create a robust production process, and set forth assays for the development of F1-V as the active pharmaceutical ingredient of the next plague vaccine.
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
The F1-V vaccine antigen, protective against Yersinia pestis, exhibits a strong tendency to multimerize that affects larger-scale manufacture and characterization. In this work, the sole F1-V cysteine was replaced with serine by site-directed mutagenesis for characterization of F1-V noncovalent multimer interactions and protective potency without participation by disulfide-linkages. F1-V and F1-V C424S proteins were over-expressed in Escherichia coli, recovered using mechanical lysis/pH-modulation and purified from urea-solubilized soft inclusion bodies, using successive ionexchange, ceramic hydroxyapatite, and size-exclusion chromatography. This purification method resulted in up to 2 mg per gram of cell paste of 95% pure, mono-disperse protein having ≤ 0.5 endotoxin units per mg by a kinetic chromogenic limulus amoebocyte lysate reactivity assay. Both F1-V and F1-V C424S were monomeric at pH 10.0 and progressively self-associated as pH conditions decreased to pH 6.0. Solution additives were screened for their ability to inhibit F1-V self-association at pH 6.5. An L-arginine buffer provided the greatest stabilizing effect. Conversion to >500-kDa multimers occurred between pH 6.0 and 5.0. Conditions for efficient F1-V adsorption to the cGMPcompatible Alhydrogel® adjuvant were optimized. Side-by-side evaluation for protective potency against subcutaneous plague infection in mice was conducted for F1-V C424S monomer; cysteinecapped F1-V monomer; cysteine-capped F1-V multimer; and a F1-V standard reported previously. After a two-dose vaccination with 2 × 20 µg of F1-V, respectively, 100, 80, 80, and 70% of injected mice survived a subcutaneous lethal plague challenge with 10 8 LD 50 Y. pestis CO92. Thus, vaccination with F1-V monomer and multimeric forms resulted in significant, and essentially equivalent, protection.
ABSTRACT:Previous studies have established that vaccination of black-footed ferrets (Mustela nigripes) with F1-V fusion protein by subcutaneous (SC) injection protects the animals against plague upon injection of the bacterium Yersinia pestis. This study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse, a probable route for natural infection. Eight black-footed ferret kits were vaccinated with F1-V protein by SC injection at approximately 60 days-of-age. A booster vaccination was administered 3 mo later via SC injection. Four additional ferret kits received placebos. The animals were challenged 6 wk after the boost by feeding each one a Y. pestis-infected mouse. All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days after exposure. To determine the duration of antibody postvaccination, 18 additional black-footed ferret kits were vaccinated and boosted with F1-V by SC injection at 60 and 120 days-of-age. High titers to both F1 and V (mean reciprocal titers of 18,552 and 99,862, respectively) were found in all vaccinates up to 2 yr postvaccination, whereas seven control animals remained antibody negative throughout the same time period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.