Growth hormone (GH) action is attenuated during the hepatic acute-phase response (APR). To understand this attenuation, we asked whether GH and cytokine-signaling pathways intersect during an APR. In hypophysectomized rats treated with lipopolysaccharide (LPS), accumulation of activated signal transducer and transcription activator 5 (Stat5) in hepatic nuclei in response to GH and its binding to a GH response element (GHRE) from the serine protease inhibitor (Spi) 2.1 promoter are diminished in a time-dependent manner. Similarly, accumulation of activated Stat3 in hepatic nuclei in response to LPS and its binding to a high-affinity sis-inducible element (SIE) are also diminished by the simultaneous administration of GH. In functional assays with primary hepatocytes, LPS-stimulated monocyte-conditioned medium (MoCM) inhibits the GH response of Stat5-dependent Spi 2.1 reporter activity but induces Stat3-dependent Spi 2.2 reporter activity, as in an APR. Similar results are obtained when hepatocytes are treated with either tumor necrosis factor-alpha (TNF-alpha) or interleukin (IL)-1beta. TNF-alpha, IL-1beta, and IL-6 also inhibit GH-induced Spi 2.1 mRNA expression in hepatocytes. Thus inhibition of the GH signaling pathway during an APR results in reduced expression of GH-responsive genes.
In neonatal rats, expression of serine protease inhibitors 2.1 and 2.3 mRNA peaks on d 2 of life and declines shortly thereafter, coinciding with levels of circulating GH. To evaluate the role of GH in this increase and to test the hypothesis that GH is active in perinatal life, we studied GH action in a model of GH deficiency. Maternal/neonatal hypothyroidism with consequent GH deficiency was induced by methimazole administration to pregnant dams. The resultant hypothyroid neonates were treated at d 2 or 7 of age with GH or saline for 1 h before exsanguination. In d-7 neonates, but not at d 2, GH administration resulted in significant serine protease inhibitors 2.1 and 2.3 mRNA induction. This treatment did not result in increased production of either GH receptor or IGF-I mRNA at either age. There was a slight GH-independent increase in GH receptor and IGF-I mRNA expression by d 7. Electromobility shift assays using hepatic nuclear extracts from these neonates and the GH response element from the serine protease inhibitor 2.1 promoter showed signal transducer and activator of transcription 5 (Stat5) binding in response to GH in extracts from d-7 rats only. Immunoblots of these extracts showed twice as much Stat5 in the nuclei of d-7 treated neonates compared with d-2 treated neonates. We conclude that there is apparent insensitivity to GH treatment in d-2 neonates that remits by d 7 and that this remission correlates with increased abundance of GH receptor and Stat5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.